Высокочастотный и низкочастотный фильтры

2. 1. ДИФФЕРЕНЦИРУЮЩАЯ RC-ЦЕПЬ

Цепь, состоящая из последовательно включенных конденсатора емкостью С и резистора с сопротивлением R, называется RC-цепью. Одной из основных характеристик RC-цепи является величина t = RC, имеющая размерность времени.

 
 
Рис. 2.1. Дифференцирующая RC-цепь  

 
  высокочастотный и низкочастотный фильтры - student2.ru

Рассмотрим схему, изображенную на рис. 2.1. Здесь U1 – входное напряжение, а выходное напряжение U2 снимается с резистора. При этом мы считаем, что прибор, которым измеряется выходное напряжение, имеет бесконечно большое входное сопротивление и ток через него не идет.

По второму правилу Кирхгофа

высокочастотный и низкочастотный фильтры - student2.ru где I – входной ток.

Дифференцируя по времени (при R = const), получаем

высокочастотный и низкочастотный фильтры - student2.ru

Таким образом, приходим к выражению

высокочастотный и низкочастотный фильтры - student2.ru

т. к. выходное напряжение U2 в данном случае равно напряжению на сопротивлении UR.

При τ → ¥: высокочастотный и низкочастотный фильтры - student2.ru << высокочастотный и низкочастотный фильтры - student2.ru , высокочастотный и низкочастотный фильтры - student2.ru , т.е.U1 ≈ U2. Это приближение реализуется в случае быстрых сигналов ( высокочастотный и низкочастотный фильтры - student2.ru >> высокочастотный и низкочастотный фильтры - student2.ru ), для которых τ >> 1/ω, или, иначе, τ >> Т (ω– циклическая частота сигнала, Т – период). В этом случае цепь используется для передачи изменений сигнала без передачи постоянной составляющей.

При τ → 0: высокочастотный и низкочастотный фильтры - student2.ru << высокочастотный и низкочастотный фильтры - student2.ru и высокочастотный и низкочастотный фильтры - student2.ru , т.е. высокочастотный и низкочастотный фильтры - student2.ru . Следовательно, при малых τ такая RC-цепь осуществляет дифференцирование входного сигнала. Это приближение реализуется в случае медленных сигналов ( высокочастотный и низкочастотный фильтры - student2.ru << высокочастотный и низкочастотный фильтры - student2.ru ), для которых τ << 1/ω или τ << Т.

Для гармонической ЭДС аналогичный результат легко получить, вычисляя коэффициент передачи цепи по напряжению который определяется следующим образом:

высокочастотный и низкочастотный фильтры - student2.ru где φ = φ2 – φ1.

Коэффициент передачи цепи показывает, какая часть входного напряжения передается на выход цепи. При этом модуль |γ| и аргумент φ = φ2 – φ1 (равный фазовому сдвигу между напряжениями на выходе и входе) являются вещественными функциями частоты. Зависимость модуля коэффициента передачи от частоты называется амплитудно-частотной характеристикой (АЧХ) цепи, а зависимость аргумента коэффициента передачи от частоты – фазочастотной характеристикой (ФЧХ).

Так как в нашем случае импеданс цепи Z = XC + R, то для входного напряжения получим

высокочастотный и низкочастотный фильтры - student2.ru

Выходное напряжение, как уже упоминалось, U2 = IR. Следовательно

высокочастотный и низкочастотный фильтры - student2.ru

При τ << 1/ω (случай медленных сигналов) γ ≈ iωτ. При этом сдвиг фаз между входным и выходным напряжениями (аргумент γ) равен π/2, что эквивалентно дифференцированию.

При τ >> 1/ω (случай быстрых сигналов) γ ≈ 1, т. е. сигнал проходит без искажений.

В общем случае модуль и аргумент коэффициента передачи будут равны соответственно:

высокочастотный и низкочастотный фильтры - student2.ru высокочастотный и низкочастотный фильтры - student2.ru

При достаточно больших частотах, когда ω >> 1/τ и ω → ∞, высокочастотный и низкочастотный фильтры - student2.ru → 0, тогда |γ| → 1.

При малых частотах, когда ω << 1/ τ и ω → 0, высокочастотный и низкочастотный фильтры - student2.ru >> 1, тогда |γ| → 0.

Эта зависимость показана на рис. 2.2. Представленная на этом рисунке зависимость характерна для фильтров высоких частот, которые пропускают высокие частоты и не пропускает низкие.

 
  высокочастотный и низкочастотный фильтры - student2.ru

2. 2. ИНТЕГРИРУЮЩАЯ RC-ЦЕПЬ

 
 
Рис. 2.3.Интегрирующая RC-цепь  

 
  высокочастотный и низкочастотный фильтры - student2.ru

Рассмотрим случай, когда выходным звеном RC-цепи является конденсатор (рис. 2.3). Тогда аналогично первому случаю:

U1 = IR + UC , высокочастотный и низкочастотный фильтры - student2.ru

Из последнего равенства получаем:

высокочастотный и низкочастотный фильтры - student2.ru откуда высокочастотный и низкочастотный фильтры - student2.ru

Поскольку в данном случае U2 = UC , то приходим к выражению:

высокочастотный и низкочастотный фильтры - student2.ru

При τ → 0 (для медленных сигналов) U2 ≈ U1. Такие сигналы цепь пропускает без искажений.

При τ → ∞ (быстрые сигналы):

высокочастотный и низкочастотный фильтры - student2.ru или высокочастотный и низкочастотный фильтры - student2.ru т. е. происходит интегрирование входного сигнала. Поэтому данная цепь называется интегрирующей.

Коэффициент передачи интегрирующей цепи равен:

высокочастотный и низкочастотный фильтры - student2.ru

При ω << 1/τ (медленные сигналы) γ ≈ 1. При ω >> 1/τ (быстрые сигналы) высокочастотный и низкочастотный фильтры - student2.ru и аргумент γ равен –π/2, что соответствует интегрированию.

В общем случае выражения для модуля и аргумента коэффициента передачи интегрирующей цепи имеют следующий вид:

высокочастотный и низкочастотный фильтры - student2.ru φ = – arctg (ωτ).

При достаточно больших частотах, когда ω >> 1/τ и ω → ∞, ω2τ2 >> 1, |γ| → высокочастотный и низкочастотный фильтры - student2.ru , |γ| → 0.

При малых частотах, когда ω << 1/τ и ω → 0, тогда |γ| → 1.

Эта зависимость качественно показана на рис. 2.4. Представленная на этом рисунке зависимость характерна для фильтров низких частот, которые пропускают низкие частоты и не пропускает высокие.

 
  высокочастотный и низкочастотный фильтры - student2.ru

ЛАБОРАТОРНЫЕ РАБОТЫ

Лабораторная работа № 3

Исследование высокочастотного фильтра. Дифференцирующая RC-цепь.

1. Построить схему дифференцирующей RC-цепи, используя программу моделирования электрофизических процессов Electronics WorkBench, как показано на рисунке 1. К входу и выходу цепи подключить осциллограф и АЧХ-метр.

высокочастотный и низкочастотный фильтры - student2.ru

2. Для значений R и C, заданных преподавателем, рассчитать постоянную времени τ. Исследовать моделированием зависимости |Z| - модуля импеданса (полного сопротивления) цепи, |γ| - модуля коэффициента передачи, φ - аргумента коэффициента передачи от частоты с помощью осциллографа и АЧХ-метра. Построить графики перечисленных зависимостей. Построить векторную диаграмму RC-цепи.

высокочастотный и низкочастотный фильтры - student2.ru , где (Uвх = U1 ,Uвых = U2),

высокочастотный и низкочастотный фильтры - student2.ru ,

arg (γ) = φ (Uвых) – φ (Uвх) =φ (U2) – φ (U1) = – arg(Z),

arg (Z) = φ (Uвх) – φ (Iвых) = φ (U1) – φ (U2).

3. Как изменится АЧХ цепи при увеличении τ = RC в два раза (или увеличиваем R в два раза, или увеличиваем C в два раза, или увеличиваем R и C: 2τ = (2R)C = R(2C) = ( высокочастотный и низкочастотный фильтры - student2.ru R) ( высокочастотный и низкочастотный фильтры - student2.ru C). Проанализировать форму выходного сигнала для различных значений R и C. Результаты анализа занести в табл. 1.

Таблица 1

  R   C   τ   вид входного и выходного сигнала
       

4. Проанализировать форму выходного сигнала при различных частотах входных сигналов прямоугольной формы с заполняемостью 50%. Результаты занести в таблицу 2.

Таблица 2

  f   вид входного и выходного сигнала
   

5. Собрать и зарисовать схему дифференцирующей RC-цепи, используя реальные приборы. Повторить экспериментальную часть пункта 2.

Лабораторная работа № 4

Исследование низкочастотного фильтра. Интегрирующая RC-цепь

1. Построить схему интегрирующей RC-цепи, используя программу моделирования электрофизических процессов Electronics WorkBench, как показано на рисунке 2. К входу и выходу цепи подключить осциллограф и АЧХ-метр.

       
  высокочастотный и низкочастотный фильтры - student2.ru
 
   
Рис. 2. Схема для измерения параметров интегрирующей RC-цепи.

2. Для значений R и C, заданных преподавателем, рассчитать постоянную времени τ. Исследовать моделированием зависимости модуля импеданса (полного сопротивления) цепи, модуля коэффициента передачи, аргумента коэффициента передачи от частоты с помощью осциллографа и АЧХ-метра. Построить графики перечисленных зависимостей. Построить векторную диаграмму.

3. Как изменится АЧХ цепи при увеличении τ в два раза. Проанализировать форму выходного сигнала для различных значений R и C. Результаты занести в таблицу 1 (см. лабораторную работу № 3).

4. Проанализировать форму выходного сигнала при различных частотах входных сигналов треугольной формы с заполняемостью 50 %. Результаты занести в таблицу 2 (см. лабораторную работу № 3).

5. Собрать и зарисовать схему интегрирующей RC-цепи, используя реальные приборы. Повторить экспериментальную часть пункта 2.

Наши рекомендации