Электрический ток это упорядоченное движение каких-либо заряженных
Электрический ток.
Электрический ток это упорядоченное движение каких-либо заряженных
Частиц.
Существования электрического тока включают в себя несколько условий.
Во-первых, наличие свободных электронов и ионов, которые выполняют роль передатчиков зарядов.
Во-вторых, чтобы эти элементарные частицы начали упорядоченно двигаться, необходимо создать поле, основным признаком которого является разность потенциалов между любыми точками электрика.
В-третьих, электрический ток не может существовать длительное время только под воздействием кулоновских сил, так как постепенно потенциалы будут выравниваться.
Поэтому необходимы источники для пополнения энергии. Их принято называть источниками тока.
Виды электрического тока:
1. Электрический ток проводимости: “явление направленного движения свободных носителей заряда в веществе или в вакууме“.
2. Электрический ток переноса: «электрический ток, осуществляемый переносом электрических зарядов телами».
3. Электрический ток зарядки (разрядки): ток поляризации, связанный с зарядкой (разрядкой) конденсаторов и аккумуляторов.
4. Имеются еще два очень распространенных термина: “постоянный ток“ и “переменный ток“.
Электрический ток в проводниках.
Электрический ток - направленное движение заряженных частиц в электрическом поле.
Заряженными частицами могут являться электроны или ионы (заряженные атомы).
Атом, потерявший один или несколько электронов, приобретает положительный заряд. - Анион (положительный ион).
Атом, присоединивший один или несколько электронов, приобретает отрицательный заряд. - Катион (отрицательный ион).
Ионы в качестве подвижных заряженных частиц рассматриваются в жидкостях и газах.
В металлах носителями заряда являются свободные электроны, как отрицательно заряженные частицы.
В полупроводниках рассматривают движение (перемещение) отрицательно заряженных электронов от одного атома к другому и, как результат, перемещение между атомами образовавшихся положительно заряженных вакантных мест - дырок.
За направление электрического тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих пор. Так же и напряжённость электрического поля определена для положительного пробного заряда.
На любой единичный заряд q в электрическом поле напряженностью E действует сила:
F = qE,
Электрический ток может быть постоянным или переменным.
Постоянный ток - электрический ток, направление и величина которого не меняются во времени.
Переменный ток — электрический ток, величина и направление которого меняются с течением времени.
Рисунок 2 Атом.
Электрический заряд - величина, определяющая интенсивность электромагнитного взаимодействия заряженных частиц.
Напряженность - это сила, с которой электрическое поле действует на заряд, помещенный в данную точку этого поля. Единица измерения - вольт/метр.
Где Е - напряженность, F - сила, Н; q - величина электрического заряда, Кл.
S - путь, м.
Эта работа равна потенциальной энергии WМ, которой обладает заряд в 1 Кл в рассматриваемой точке поле (например, М).
А
Сейчас получили широкое применение в электронике полупроводники. Они занимают промежуточное положение между проводниками и диэлектриками и характеризуются тем, что величину электрической проводимости в полупроводниках можно регулировать различным воздействием. Для производства большинства современных проводников используются кремний, германий и углерод. Кроме того, для изготовления ПП могут использоваться другие вещества, но они применяются гораздо реже.
В электротехнике важное значение имеет передача тока с минимальными потерями. В этом отношении важную роль играют металлы с большой электропроводностью и, соответственно, маленьким электросопротивлением. Самым лучшим в этом отношении является серебро (62500000 См/м), далее следуют медь (58100000 См/м), золото (45500000 См/м), алюминий (37000000 См/м). В соответствии с экономической целесообразностью чаще всего используются алюминий и медь, при этом медь по проводимости совсем немного уступает серебру. Все остальные металлы не имеют промышленного значения для производства проводников.
Законы Ома.
В 1826 году немецкий физик Георг Ом открыл важный закон электричества, определяющий количественную зависимость между электрическим током и свойствами проводника, характеризующими их способность противостоять электрическому току.
Эти свойства впоследствии стали называть электрическим сопротивлением, обозначать буквой R и измерять в Омах в честь первооткрывателя.
Закон Ома в современной интерпретации классическим соотношением U/R определяет величину электрического тока в проводнике исходя из напряжения U на концах этого проводника и его сопротивления R:
I = U/R
Закон Ома для участка цепи.
Где U – напряжение концов участка, I– сила тока, R– сопротивление проводника. Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значения U и R, сделав несложные математические операции.
U = I*R или R = U / I
Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи. Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.
I = E/ Rвн+r
Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.
Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:
I = U/ R =( f1 – f2 + E)/ R
ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника, совпадает с движением тока в электрической сети, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же несовпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС, и эдс будет отрицательная.
Баланс мощностей.
Закон Джоуля - Ленца
Электрическая цепь - совокупность устройств, предназначенных для прохождения электрического тока. Цепь образуется источниками энергии (генераторами), потребителями энергии (нагрузками), системами передачи энергии (проводами).
Электрическая цепь - совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.
Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь - совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).
Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.
Которой линейны.
Называется нелинейной.
Называют электской схемой.
Однофазный переменный ток.
Электрический токназываетсяпеременным, если он в течение времени меняет свое направление и непрерывно изменяется по величине.
Получение синусоидальной кривой.
В системе прямоугольных координат совмещены тригонометрический круг и кривая, отражающая изменение величины тригонометрической функции sinβ от величины угла β между осью 0х и радиусом-вектором r. Радиус-вектор r вращается против часовой стрелки. Повернем радиус-вектор на угол β и от конца вектора r проведем пунктиром прямую, параллельную оси 0х. От окружности (точка а) по оси 0х отложим в масштабе отрезок. Из конца отрезка построим перпендикуляр до пересечения с пунктирной прямой. Получим точку с в пересечении перпендикуляра и пунктирной прямой.
Синусоида переменного тока.
Синусоида переменного тока
Аналогичное построение проведем, увеличивая угол β, пока радиус-вектор повернется на уголβ = 360°, и получим точки аналогично точке с. Соединим точки плавной кривой, которая и будет отражать синусоидальный закон изменения величины переменного тока.
Понятие о фазе
Каждый из параметров R, L, C может быть определен на основании геометрических параметров с учетом свойств среды и материалов. Это позволяет изготавливать их в виде отдельных элементов с заранее заданными значениями R, L, и C.
Если в цепи нужно сопротивление, то применяется Резистор
Резистор – сопротивление, оформленное в виде отдельного элемента, с гарантированным значением сопротивления.
Если в цепи нужна емкость, то применяют конденсатор
Конденсатор - емкость, оформленная в виде отдельного элемента с гарантированным значением емкости.
Если в цепи нужна индуктивность, применяют катушку, дроссель или контур
Катушка (контур), индуктивность оформленная в виде отдельного элемента, с гарантированным значением индуктивности.
Резисторы применяются для ограничения постоянных и переменных токов, а также для выделения тепла.
Конденсаторы применяются для того, чтобы пропускать переменный ток и не пропускать постоянный ток.
Индуктивности применяются для того, чтобы пропускать постоянный ток и не пропускать переменный ток.
Сочетания R, L и C позволяют делать электрические и электронные схемы с любыми заданными свойствами.
Свойствами R, L и C обладают любые элементы электрических цепей. У резистора всегда есть небольшая емкость и индуктивность, у конденсатора всегда есть признаки индуктивности и сопротивления, у катушки всегда есть сопротивление и признаки емкости. Провода всегда обладают сопротивлением, емкостью и индуктивностью, транзисторы проявляют сильные свойства емкости и т. д.
Почти всегда неосновные свойства элемента являются нежелательными, например емкости транзисторов или сопротивление катушки, но они есть и, значит, в анализе электрических цепей их надо учитывать.
Где
Iм = Uм/r,
или, переходя к действующим значениям, получаем:
Iм/√2 = Uм/√2r,
т. е.
I = U/r.
Как следует из последнего выражения, вид закона Ома для цепи переменного тока, содержащей сопротивление r, тот же, что для цепи постоянного тока. Кроме того, из закона Ома видна пропорциональность между мгновенным значением напряжения и мгновенным значением тока. Отсюда следует, что в цепи переменного тока, содержащей сопротивление r, напряжение и ток совпадают по фазе. Кривые напряжения и тока и векторная диаграмма для рассматриваемой цепи, причем длины векторов обозначают действующие значения напряжения и тока.
Так как
(i2)ср = (Iм2/√2)2 = I2,
то
P = I2 ⋅ r = U ⋅ I,
Активным сопротивлением обладают все проводники. В цепи переменного тока практически только одним активным сопротивлением обладают нити ламп накаливания, спирали электронагревательных приборов и реостатов, дуговые лампы, специальные бифилярные обмотки и прямолинейные проводники небольшой длины.
При дальнейшем изменении тока от максимума до нуля убыль величины тока становится все больше и больше, пока, наконец, около нулевого значения ток, изменяясь с наибольшей скоростью, не исчезнет, но тут же появляется вновь, протекая в обратном направлении.
Изменение тока в течение периода происходит с наибольшей скоростью около своих нулевых значений. Около максимальных значений скорость изменения тока падает, а при максимальном значении тока прирост его равен нулю. Таким образом, переменный ток меняется не только по величине и направлению, но также и по скорости своего изменения.
Так как э.д.с. самоиндукции в цепях переменного тока непрерывно противодействует изменениям тока, то, чтобы ток мог протекать по виткам катушки, напряжение сети должно уравновешивать э.д.с. самоиндукции, т.е. напряжение сети в каждый момент времени должно быть равно и противоположно э.д.с. самоиндукции.
Вектор напряжения сети, равный и противоположный э.д.с. самоиндукции ЕL, мы обозначим через U. Только при условии, что к зажимам катушки приложено напряжение сети, равное и противоположное э.д.с. самоиндукции, и, стало быть, это напряжение сети U уравновешивает э.д.с. самоиндукции ЕL, по катушке может проходить переменный ток I. Но в этом случае напряжение сети U будет опережать по фазе ток I на 90°.
Приложенное к катушке напряжение сети опережает ток на 90° и противоположно э.д.с. самоиндукции
В цепи с индуктивностью ток I отстает от приложенного напряжения U по фазе на 1/4 периода. На векторной диаграмме этому сдвигу фаз между напряжением U и током I соответствует угол α = 90° или π/2.
Таким образом, в цепях переменного тока э.д.с. самоиндукции, возникая и действуя непрерывно, вызывает сдвиг фаз между током и напряжением. Ток i по катушке будет проходить и тогда, когда напряжение сети (кривая uL) равно нулю - положение (в), и даже тогда, когда напряжение сети направлено в сторону, обратную току - положение (г и з).
В цепи переменного тока, когда э.д.с. самоиндукции отсутствует, напряжение сети и ток совпадают по фазе. Индуктивная же нагрузка в цепях переменного тока (обмотки электродвигателей и генераторов, обмотки трансформаторов, индуктивные катушки) всегда вызывает сдвиг фаз между током и напряжением.
Скорость изменения синусоидального тока пропорциональна угловой частоте ω. Следовательно, действующее значение э.д.с. самоиндукции EL может быть найдено по формуле
EL = ωLI = 2πfLI.
Как было отмечено выше, напряжение, приложенное к зажимам цепи, содержащей индуктивность, должно быть по величине равно э.д.с. самоиндукции:
UL = EL.
Поэтому
UL = 2πfLI.
Обозначая
2πfL = xL, получим UL = xLI.
Формула закона Ома для цепи переменного тока, содержащей индуктивность, имеет вид
I = UL/xL.
Величина xL называется индуктивным сопротивлением цепи, или реактивным сопротивлением индуктивности, и измеряется в омах. Таким образом, индуктивное сопротивление представляет собой своеобразное препятствие, которое цепь с индуктивностью оказывает изменениям тока в ней. Оно равно произведению индуктивности на угловую частоту:
xL = ωL = 2πfL.
Так как индуктивное сопротивление проводника зависит от частоты переменного тока, то сопротивление катушки, включаемой в цепь токов различной частоты, будет различным. Например, если имеется катушка с индуктивностью 0,05 гн, то в цепи тока частотой 50 гц ее индуктивное сопротивление будет
xL1 = 2πf1L = 2 ⋅ 3,14 ⋅ 50 ⋅ 0,05 = 15,7 ом,
а в цепи тока частотой 400 гц
xL2 = 2πf2L = 2 ⋅ 3,14 ⋅ 400 ⋅ 0,05 = 125,6 ом.
Та часть напряжения сети, которая преодолевает (уравновешивает) э.д.с. самоиндукции, называется индуктивным падением напряжения (или реактивной слагающей напряжения):
UL = xLI.
Во вторую половину периода явление повторяется. Таким образом, между источником переменного напряжения и катушкой, содержащей индуктивность, происходит обмен мощностью. В течение первой и третьей четвертей периода мощность поглощается катушкой, в течение второй и четвертой четвертей мощность возвращается источнику.
В этом случае в среднем расхода энергии не будет, несмотря на то что на зажимах цепи есть напряжение U и в цепи протекает ток I. Следовательно, средняя, или активная, мощность цепи, носящей чисто индуктивный характер, равна нулю.
Из графика видно, что мгновенная мощность цепи с индуктивностью два раза в течение каждого периода (когда ωt = 45°, 135° и т. д.) достигает максимального значения, равного:
Uм/√2 ⋅ Iм/√2 = UI.
Этой величиной принято характеризовать количественно процесс обмена энергией между источником и магнитным полем. Ее называют реактивной мощностью и обозначают буквой Q.
Учитывая, что в рассматриваемой цепи U = I ⋅ xL, получаем следующее выражение для реактивной мощности:
Q = I2xL.
Если в цепь постоянного тока включить конденсатор (идеальный - без потерь), то в течение очень короткого времени после включения по цепи потечет зарядный ток. После того как конденсатор зарядится до напряжения, равного напряжению источника, кратковременный ток в цепи прекратится. Для постоянного тока конденсатор представляет собой разрыв цепи, или, иными словами, бесконечно большое сопротивление.
При этом в цепи будет проходить переменный ток. В момент включения напряжение на конденсаторе равно нулю. В течение первой четверти периода, когда напряжение сети будет возрастать, конденсатор будет заряжаться.
Обозначим
xC = 1/2πfC = 1/ωC.
Величина xС называется емкостным сопротивлением, или реактивным сопротивлением емкости, и измеряется в омах. Выражение закона Ома для цепи переменного тока, содержащей емкость, имеет вид
I = U/xC.
Та часть напряжения сети, которая приложена к конденсатору, называется емкостным падением напряжения (или реактивной слагающей напряжения) и обозначается UC:
UC = I ⋅ xC.
Емкостное сопротивление хС, так же как индуктивное сопротивление xL, зависит от частоты переменного тока.
Магнитное поле.
Если два параллельно расположенных проводника подсоединить к источнику тока так, чтобы по ним прошел электрический ток, то в зависимости от направления тока в них, проводники либо отталкиваются, либо притягиваются.
Магнитное поле - это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела.
Магнитное поле в любой точке можно охарактеризовать вектором В -магнитной индукцией в этой точке.
Магнитная индукция В определяет силу, с которой магнитное поле действует на движущуюся в нем заряженную частицу. Если заряд частицы равен q, ее скорость равна v, а индукция магнитного поля в данной точке пространства равна В, то на частицу в данной точке со стороны магнитного поля действует сила, равная:
Таким образом, В — это вектор, величина и направление которого таковы, что сила Лоренца, действующая на движущийся заряд со стороны магнитного поля равна:
F=qvBSin( )
Здесь альфа — это угол между вектором скорости и вектором магнитной индукции. Вектор силы Лоренца F перпендикулярен вектору скорости и вектору магнитной индукции. Его направление для случая движения положительно заряженной частицы в однородном магнитном поле
определяется правил ом левой руки:
«Если левую руку расположить так, чтобы вектор мнитной индукции входил в ладонь, а четыре вытянутых пальца были направлены по направлению движения положительно заряженной частицы, то отогнутый на 90 градусов большой палец покажет направление силы Лоренца».
Проводник с током имеет вокруг себя магнитное поле. Для определения направления силовых линий индукции магнитного поля В электрического тока I, текущего по прямолинейному проводнику, пользуются правилом правого винта или буравчика:
«Направление вращения рукоятки буравчика показывает направление линий магнитной индукции В, а поступательное движение буравчика тогда соответствует направлению тока в проводнике».
При этом величина магнитной индукции B на расстоянии R от проводника, с током I может быть найдена про формуле:
где магнитная постоянная:
Если линии напряженности электростатического поля Е начинаясь на положительных зарядах, заканчиваются на отрицательных, то линии магнитной индукции B замкнуты всегда.
Закон Ампера.
Формулировка закона:сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником.
Ферромагнитные материалы.
Ферромагнетизм объясняется магнитными свойствами электронов. Электрон эквивалентен круговому току или вращающемуся заряженному телу и поэтому обладает собственным магнитным полем. В большинстве кристаллов магнитные поля электронов взаимно компенсируются благодаря попарной антипараллельной ориентации магнитных полей электронов. Лишь в некоторых кристаллах, например в кристалле железа, возникают условия для параллельной ориентации собственных магнитных полей электронов. В результате этого внутри кристалла ферромагнетика возникают намагниченные области, которые называются доменами. В отдельных доменах магнитные поля имеют различные направления и в большом кристалле взаимно компенсируют друг друга. При внесении ферромагнитного образца в магнитное поле происходит упорядочение ориентации магнитных полей отдельных доменов.
С увеличением магнитной индукции внешнего поля возрастает степень упорядоченности ориентации отдельных доменов – магнитная индукция возрастает. При некотором значении индукции внешнего поля наступает полное упорядочение ориентации доменов, возрастание магнитной индукции прекращается. Это явление называется магнитным насыщением.
Рассмотрим физические процессы, происходящие при циклическом перемагничивании ферромагнитного материала. Для этой цели стержень из ферромагнитного материала поместим внутрь катушки и будем пропускать по ней ток.
С увеличением тока в катушке в соответствии с выражением:
(64)
Возрастает напряженность намагничивающего поля, а также усиливается магнитная индукция В в сердечнике.
Магнитный гистерезис— явление зависимости вектора намагничивания и вектора магнитной индукции в веществе не только от приложенного внешнего поля, но и от истории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках—Fe, Co, Niи сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.
Электрический ток.
Электрический ток это упорядоченное движение каких-либо заряженных
Частиц.