Диод. Закон Люнгмера-Чайлда (закон трех степеней свободы)

Зако́н сте́пени трёх вторы́х (закон Чайлда[1], закон Чайлда — Ленгмюра, закон Чайлда — Ленгмюра — Богуславского, в немецком языке Schottky-Gleichung, уравнение Шоттки) в электровакуумной технике задаёт квазистатическую вольт-амперную характеристику идеального вакуумного диода — зависимость тока анода от напряжения между его катодом и анодом — в режиме пространственного заряда. В этом режиме, являющимся основным для приёмно-усилительных радиоламп, тормозящее действие пространственного заряда ограничивает ток катода до величины, существенно меньшей, чем предельно возможный ток эмиссии катода. В наиболее общей форме закон утверждает, что ток вакуумного диода Ia пропорционален напряжению Ua, возведённому в степень 3/2:

I_a=g〖U_a〗^(3/2)

где g — постоянная (первеанс) данного диода, зависящая только от конфигурации и размеров его электродов.

Первую формулировку закона предложил в 1911 году Чайлд (англ.)[2], впоследствии закон был уточнён и обобщён работавшими независимо друг от друга Ленгмюром (1913)[3], Шоттки (1915) и Богуславским (1923). Закон, c оговорками, применяется и к лампам с управляющей сеткой (триоды, тетроды) и к электронно-лучевым приборам. Закон применим для области средних напряжений — от нескольких В до напряжений, при которых начинается переход в режим насыщения тока эмисии. Закон не применим к области отрицательных и малых положительных напряжений, к области перехода в режим насыщения и к самому режиму насыщения.

При достаточно высоких температурах на границе металла и вакуума возникает явление термоэлектронной эмиссии. Вольфрамовый катод начинает испускать электроны при температуре около 1400° С[5], оксидный катод — при температуре около 350° С[6]. С дальнейшим ростом температуры ток эмиссии экспоненциально возрастает по закону Ричардсона — Дешмана. Максимальная практически достижимая плотность тока эмиссии вольфрамовых катодов достигает 15 А/см2, оксидных катодов — 100 А/см2[7][8].

При подаче на анод диода положительного (относительно катода) потенциала в межэлектродном пространстве диода возникает ускоряющее электроны в направлении к аноду электрическое поле. Можно предположить, что в этом поле все испущенные катодом электроны устремятся к аноду так, что ток анода будет равен току эмиссии, однако опыт это предположение опровергает. Оно справедливо только для относительно низких температур и малых плотностях тока эмиссии. При бо́льших температурах катода экспериментально наблюдаемый ток анода достигает насыщения и стабилизируется на постоянном уровне, не зависящем от температуры. С ростом анодного напряжения этот предельный ток монотонно и нелинейно возрастает[9]. Наблюдаемое явление качественно объясняется влиянием пространственного заряда:

Холодный катод вакуумной лампы не способен испускать электроны. В этом режиме вакуумный диод представляет собой обычный вакуумный конденсатор. Напряжённость электрического поля внутри такого конденсатора практически постоянна, а электрический потенциал между катодом и анодом в плоско-параллельной конфигурации изменяется по линейному закону. Одиночный электрон, попавший в такое поле, движется с постоянным ускорением, которое прямо пропорционально ускоряющему полю и, следовательно, напряжению на диоде[10].

Нагретый катод начинает испускать электроны. При подаче на анод достаточно большого положительного напряжения все испущенные электроны испытывают ускорение в межэлектродном пространстве и движутся к аноду. Электроны, находящиеся в межэлектродном пространстве, образуют пространственный заряд, искажающий электрическое поле в конденсаторе. При малых токах эмиссии и малой концентрации электронов в межэлектродном вакууме влияние пространственного заряда незначительно: потенциал всех точек межэлектродного пространства снижается, но поле во всех точках остаётся ускоряющим, поэтому почти все испущенные катодом электроны достигают анода. Ток анода равен току эмиссии катода и не зависит от анодного напряжения[11].

При дальнейшем разогреве катода пространственный заряд увеличивается настолько, что вблизи катода возникает потенциальная яма — область с потенциалом ниже, чем потенциал катода. Электроны, испущенные катодом испытывают отталкивание от области пространственного заряда и попадают в тормозящее поле. Электроны, покинувшие катод с достаточно большой скоростью (быстрые электроны), преодолевают потенциальную яму и продолжают путь к аноду. Другие, медленные, электроны возвращаются назад, на катод, поэтому ток анода оказывается существенно ниже тока эмиссии катода[11]. Практические измерения показывают, что с ростом анодного напряжения ток анода монотонно и нелинейно возрастает.

Количественная зависимость тока, ограниченного пространственным зарядом, от анодного напряжения и описывается законом трёх вторых.

51. Законы Ома и Кирхгофа для схем постоянного тока. Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.

Закон Ома для участка цепи

Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома

Диод. Закон Люнгмера-Чайлда (закон трех степеней свободы) - student2.ru

Рис.1 или UR = RI.

В этом случае UR = RI – называют напряжением

или падением напряжения на резисторе R, а – током в резисторе R.

При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью:

Диод. Закон Люнгмера-Чайлда (закон трех степеней свободы) - student2.ru

В этом случае закон Ома для участка цепи запишется в виде:

I = Uq.

Закон Ома для всей цепи

Этот закон определяет зависимость между ЭДС Е источника питания с внутренним сопротивлением r0 (рис.1), током I электрической цепи и общим эквивалентным сопротивлением RЭ = r0 + R всей цепи:

Диод. Закон Люнгмера-Чайлда (закон трех степеней свободы) - student2.ru

Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

Диод. Закон Люнгмера-Чайлда (закон трех степеней свободы) - student2.ru

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1) I - I1 - I2 = 0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

Диод. Закон Люнгмера-Чайлда (закон трех степеней свободы) - student2.ru

где n – число источников ЭДС в контуре; m – число элементов с сопротивлением Rк в контуре; Uк = RкIк – напряжение или падение напряжения на к-м элементе контура.

Для схемы (рис. 1) запишем уравнение по второму закону Кирхгофа:

E = UR + U1.

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контура, включая источники ЭДС равна нулю

Диод. Закон Люнгмера-Чайлда (закон трех степеней свободы) - student2.ru

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Диод. Закон Люнгмера-Чайлда (закон трех степеней свободы) - student2.ru

Рис.2

Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 2):

контур I: E = RI + R1I1 + r0I,

контур II: R1I1 + R2I2 = 0,

контур III: E = RI + R2I2 + r0I.

Наши рекомендации