Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона

Как уже обсуждалось, на контакте двух металлов возникает внутренняя разность потенциалов. Если температуры обоих спаев равны, то и разности потенциалов равны. В случае разницы температур термоЭДС равна сумме внутренних разностей потенциалов на контактах: Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru . При другом соотношении температур, соответственно изменяется величина и направление термоэлектрического тока.

В 1834 г. Ж.Пельтье обнаружил, что при прохождении через контакт двух различных проводников электрического тока, в зависимости от его направления, помимо тепла Джоуля-Ленца выделяется или поглощается дополнительная теплота. Таким образом явление Пельтье является обратным по отношению к эффекту Зеебека.

Термоэлектродвижущей силой называется ЭДС, которую вводят для характеристики этого явления. Величина термоЭДС пропорциональна разности температур спаев двух контактов:

Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru , где Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru ~10-5 В/К. Например, термоЭДС для пары медь-константан 4,25мВ при разности температур 100 К.

Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru

РИС.215 РИС.216 РИС.217 РИС.218

В отличие от теплоты Джоуля-Ленца, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока.

Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru , где П – коэффициент Пельтье, зависящий от химической природы металлов и температуры

Согласно наблюдениям Пельтье, при пропускании тока через те же два металла, что и в опыте Зеебека, но с одинаковой температурой спаев, один из них нагревается, а другой охлаждается. Если направление тока совпадает с термотоком, то нагревается спай В и охлаждается спай А (рис.216), а если направление тока противоположно, то наоборот.

Определить коэффициент Пельтье можно при калориметрических измерениях количества теплоты в спаях двух металлов (рис.217). При пропускании тока в указанном направлении через контакт меди и висмута, в первом сосуде выделяется Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru , а во втором Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru . Следовательно: Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона - student2.ru . Для металлов коэффициент Пельтье ~ 10-3-10-2 В, а для полупроводников ~ 0,003-0,3 В.

Объясняется явление Пельтье тем, что при переходе электрона из одного металла в другой изменяется его полная энергия, а, следовательно, в одном спае внутренняя энергия переходит в энергию электронов, а в другом энергия электронов отдается кристаллической решетке, что соответствует закону сохранения энергии.

При малой силе тока теплота Пельтье может превышать теплоту Джоуля-Ленца, что используется в термоэлектрических полупроводниковых холодильниках, созданных впервые в 1954 г. под руководством А.Ф.Иоффе, а также в других приборах.

В.Томсон теоретически обосновал, что при прохождении тока по неравномерно нагретому проводнику должно происходить дополнительное выделение или поглощение теплоты. Проведенный им для проверки эксперимент получил название явление Томсона. Суть эксперимента состояла в том, что концы двух металлических стержней поддерживались при различной температуре, а по цепи, в которую стержни были подсоединены, пропускался постоянный ток (рис. 218). Без тока точки 1 и 2 имели одинаковую температуру, а при пропускании тока между точками 1 и 2 регистрировалась разница температур. Выделение или поглощение тепла зависело от химической природы проводников и соотношения градиента температуры и направления тока.

Например, для цинка наблюдалось выделение тепла, если возрастание температуры совпадало с направлением силы тока, а для железа – наоборот.

Эффект Томсона, как и другие термоэлектрические явления, наиболее корректно и количественно обосновывается в рамках квантовых представлений об энергетических состояниях электрона при различных условиях в кристаллической структуре.

Наши рекомендации