Измерение сдвига фаз осциллографическими методами.
Осциллографический метод
Измерение фазового сдвига осциллографическим методом можно реализовать способами линейной, синусоидальной и круговой разверток. Ограничимся рассмотрением первых двух способов, как наиболее распространенных.
С пособ линейной развертки. В каналы вертикального отклонения двухлучевого или двухканального осциллографа подают напряжения и ; генератор развертки осциллографа включен. Уравнивают амплитуды обоих напряжений. Осциллограмма будет иметь вид. Фазовый сдвиг вычисляют по формуле (1), подставляя измеренные длины отрезков l и ∆l, соответствующие Т и ∆T.
С пособ синусоидальной развертки осуществляется с помощью однолучевого осциллографа. В канал вертикального отклонения подается напряжение , а в канал горизонтального ; генератор развертки выключен. На экране осциллографа появляется осциллограмма в виде эллипса, уравнение которого имеет вид
где В и А — максимальные отклонения по вертикали и горизонтали соответственно.
Положив х = 0, получим вертикальный отрезок у0=В sin; положив у=0, получим горизонтальный отрезок х0 = A sin φ. Отсюда: sin φ = ± у0/В = ± х0/А. Перед измерением удобно уравнять максимальные отклонения по вертикали и по горизонтали (А = В); тогда у0 = х0. Для вычисления фазового сдвига измеряют по осциллограмме отсекаемые на координатных осях отрезки 2х0 или 2у0 и сторону прямоугольника 2А или 2В, в который вписан эллипс:
(4)
Способ синусоидальной развертки не позволяет определить фазовый сдвиг однозначно. Когда оси эллипса совпадают с осями координат, фазовый сдвиг φ равен 90о или 270°. Если большая ось эллипса располагается в первом и третьем квадрантах, то фазовый сдвиг 0 < φ < 90° или 270° < φ < 360°; если во втором и четвертом, то 90°<φ<180° или 180°< φ < 270°. Для устранения неоднозначности нужно ввести дополнительный сдвиг 90°, и по изменению вида осциллограммы легко определить действительный фазовый сдвиг. Например, получили φ, равный 30о или 330°. Ввели дополнительно +90°. Если осциллограмма осталась в прежних квадрантах, то φ = 330°; если переместилась во второй и четвертый, то φ=30°. Осциллографический метод не требует никаких дополнительных приборов и прост по идее. Однако он является косвенным, требует линейных измерений и вычислений, что приводит к значительным погрешностям. Общая погрешность складывается из случайных погрешностей — измерения длин отрезков, совмещения следа луча с линиями масштабной сетки и конечного значения диаметра светового пятна на экране осциллографа, и систематических—инструментальной и методической. Инструментальная погрешность возникает за счет наличия собственных фазовых сдвигов в каналах осциллографа. Методическая погрешность связана с наличием гармоник в исследуемых напряжениях.
Погрешность измерения отрезков l можно уменьшить тщательной фокусировкой луча при малой яркости и применением осциллографа с электронно-лучевой трубкой, в которой масштабная сетка нанесена на внутреннюю поверхность экрана. Фазовый сдвиг в каналах осциллографа легко обнаружить, подав одно и то же напряжение на оба входа осциллографа. При отсутствии фазового сдвига на экране появится прямая линия. Если появляется эллипс, то нужно измерить значение фазового сдвига по формуле (4) и внести в результат измерения соответствующую поправку. Если поправку точно определить не удается, то погрешность можно исключить методом компенсации. Для этого нужно выполнить два измерения: первое — как обычно, а второе — подав исследуемые напряжения на противоположные входы осциллографа. В результате первого измерения получим φ1 = φ +∆φ, где ∆φ — неизвестный фазовый сдвиг в каналах осциллографа. В результате второго получим φ2 = (360° — φ) + ∆φ. Из разности φ2- φ1 = 360°- 2φ находим искомый фазовый сдвиг φ = 180° — [(φ2 — φ1)/2].
46. Измерение сдвига фаз компенсационным методом и методом преобразования фазового сдвига в импульсы тока
Компенсационный метод измерений
метод измерений, основанный на компенсации (уравнивании) измеряемого напряжения или эдснапряжением, создаваемым на известном сопротивлении током от вспомогательного источника. К. м. и.применяют не только для измерений электрических величин (эдс, напряжений, токов, сопротивления); оншироко применяется и для измерения др. физических величин (механических, световых, температуры и т.д.),которые обычно предварительно преобразуют в электрические величины.
Исследуемые напряжения и поступают на два идентичных канала, каждый из которых состоит из входного устройства синхронизируемого мультивибратора дифференцирующей цепи (рис. 7-13, а). Мультивибраторы вырабатывают меандры частота которых равна частоте входных напряжений (рис. 7-13, б). Меандры дифференцируются, и фронты получившихся при этом
коротких импульсов точно соответствуют моментам переходов через нуль исходных напряжений. Отрицательные импульсы ограничиваются, а положительные и остаются. Нетрудно убедиться, что интервал между импульсами пропорционален фазовому сдвигу; если его отнести к длительности периода то в соответствии с формулой получим Положительные импульсы используют для управления триггером Импульс первого канала открывает триггер, а второго — закрывает. В соответствующей цепи триггера возникает прямоугольный импульс длительность которого соответствует фазовому сдвигу
В цепь тока триггера включен магнитоэлектрический миллиамперметр, показания которого пропорциональнысреднему значению тока за период:
Очевидно, что шкалу миллиамперметра можно градуировать непосредственно в градусах.
Прямо показывающий прибор, схему которого мы рассмотрели, называется фазометром. Диапазон рабочих частот фазометра, работающего на принципе преобразования фазового сдвига в импульсы тока, ограничен снизу инерционными свойствами магнитоэлектрического индикатора (20 Гц), а сверху — паразитными параметрами схемы и инерционностью транзисторов, ухудшающими фронт импульса и четкость срабатывания триггера. Применение туннельных диодов позволяет увеличить верхнюю границу частот до Погрешность измерения составляет