РАЗДЕЛ 6. Тепловые свойства твердых тел

Атомы в твердом теле при любой температуре совершают тепловые колебания около своих средних положений равновесия. При нагревании твердого тела, поглощаемая им теплота расходуется на увеличение интенсивности теплового движения. Основные особенности теплового движения в твердых телах отслеживают по поведению теплоемкости с изменением температуры. Теплоемкость Сv твердого тела при постоянном объеме выражает изменение тепловой энергии при изменении температуры тела на 10С и находится дифференцированием Ереш по Т: Сv=dЕреш/dT. Тепловая энергия Ереш складывается из энергии нормальных колебаний решетки. Умножая число нормальных колебаний, приходящихся на спектральный участок dw, равное g(w)dw, на среднюю энергию нормального колебания РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru , получим энергию нормальных колебаний, заключенных в интервале dw: dEреш= РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru g(w)dw. Проинтегрировав это выражение по всему спектру нормальных колебаний, т.е. в пределах от 0 до wД, получим энергию тепловых колебаний решетки твердого тела:

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru . (6.1)

Основным вопросом теории теплоемкости является зависимость Сv от температуры. Рассмотрим вопрос о зависимости Сv от температуры для двух областей температур: область низких температур Т << qД (qД - температура Дебая) и область высоких температур Т > qД.

1. Область высоких температур.

В области высоких температур изменение энергии твердого тела может происходить только за счет повышения степени возбуждения нормальных колебаний, приводящего к увеличению их средней энергии. Полная средняя тепловая энергия системы, состоящей из Na атомов с 3Na степенями свободы равна Е = 3NakбТ. Отсюда молярная темплоемкость

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru . (6.2)

Здесь NA = 6,022 1023 моль-1- постоянная Авогадро; kБ = 1,38 10-23Дж/К - постоянная Больцмана; R = 8,31 Дж/моль К - молярная газовая постоянная. Это закон Дюлонга и Пти, достаточно хорошо оправдывающийся на практике.

2. Область низких температур.

В области низких температур энергия кристалла с повышением температуры увеличивается вследствие действия двух механизмов:

1) роста средней энергии каждого нормального колебания из-за повышения степени его возбуждения;

2) роста числа возбужденных нормальных колебаний решетки.

Первый механизм вызывает рост энергии, пропорциональный Т, второй - пропорциональный - Т3. Поэтому в целом с повышением температуры энергия решетки растет пропорционально Т4: Ереш ~ Т4, а теплоемкость пропорционально Т3 (закон Дебая).

Физическая картина характера изменения температурной зависимости энергии и теплоемкости твердого тела при повышении его температуры выглядит таким образом. В области низких температур (Т<<qД) энергия тела с увеличением температуры повышается, во-первых, вследствие роста степени возбуждения каждого нормального колебания, т.е. роста их средней энергии, пропорциональной Т; во-вторых, вследствие включения в работу все новых и новых нормальных колебаний, вызывающих повышение энергии тела пропорционально Т3. По мере приближения к температуре Дебая второй механизм постепенно из работы выключается, и зависимость Е от Т ослабляется, что вызывает отступление от закона Дебая.

При температуре Дебая возбуждается уже весь спектр нормальных колебаний решетки, поэтому второй механизм роста энергии с повышением температуры выключается полностью; работает лишь первый механизм, вызывая рост энергии, пропорциональный Т, и независимость от Т темплоемкости тела Сv (закон Дюлонга и Пти).

Более строгие количественные расчеты, подкрепляющие качественные закономерности изменения Сv(Т), были выполнены в 1907г. Эйнштейном, а затем Дебаем (в 1912 г.).

1. Модель Эйнштейна.

Эйнштейн исходил из двух предположений:

- твердое тело представляет собой совокупность одинаковых гармонических осцилляторов (атомов), которые колеблются независимо друг от друга с одной и той же частотой w в трех взаимно перпендикулярных направлениях;

- энергия осцилляторов квантована по Планку.

Энергия Е системы из NA атомов, определяемая колебаниями решетки равна

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru . (6.3)

Тогда темплоемкость

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru . (6.4)

В области высоких температур формула (6.3) приобретает вид закона Дюлонга и Пти. В области низких температур Сv ~ РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru . Ограниченность модели Эйнштейна состоит в его предположении о равенстве частот всех упругих волн в твердом теле.

2. Модель Дебая.

Дебай сохранил идею Эйнштейна о квантованности энергии гармонических осцилляторов по Планку, пополнив ее предположением о том, что гармонические осцилляторы колеблются с различными частотами. Энергия системы осцилляторов с различными частотами равна

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru (6.5)

где х = РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru . Тогда при высоких температурах теплоемкость: Сv = 3R, а при низких:

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru .

Теплоемкость металлов складывается из темплоемкости решетки Среш и теплоемкости электронного газа Се

Сv = Среш + Се. (6.6)

С классической точки зрения (электронный газ невырожденный)

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru .

Поэтому теплоемкость электронного газа Секл = 3R/2, а общая теплоемкость Сv = 9R/2. В действительности в области высоких температур металлы, как и диэлектрики, обладают теплоемкостью Сv = 3R, что свидетельствует о том, что электронный газ не вносит заметного вклада в теплоемкость металлов. Это обстоятельство нашло объяснение в квантовой теории. Вследствие того, что электронный газ в металлах является вырожденным, термическому возбуждению даже в области высоких температур подвергается лишь незначительная доля свободных электронов (£ 10%); остальные электроны теплоту не поглощают. Поэтому теплоемкость такого газа незначительна по сравнению с теплоемкостью решетки и теплоемкость металла в целом практически равна теплоемкости его решетки. В области низких температур теплоемкость решетки падает ~ Т3 и вблизи абсолютного нуля может оказаться столь малой, что основное значение может приобрести теплоемкость электронного газа Се, которая с понижением температуры падает значительно медленнее (Се ~ T).

С нагреванием твердого тела средние расстояния между частицами увеличиваются, и тело расширяется. Причиной этого является ангармонический характер колебаний частиц твердого тела, обусловленный асимметрией кривой зависимости энергии взаимодействия частиц от расстояния между ними. Коэффициент линейного теплового расширения a равен

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru , (6.7)

где <x> - среднее расстояние между атомами; х0 - положение равновесия атомов, g - коэффициент ангармоничности, b - коэффициент квазиупругой силы.

Еще одним эффектом, обусловленным ангармоническим характером колебания атомов, является тепловое сопротивление твердых тел. Выражение для теплопроводности в случае фононов: К=1/3 (Сu L), где С - теплоемкость единицы объема, u - средняя скорость частицы, L-средняя длина свободного пробега между двумя последующими столкновениями. Теплопроводность металлов складывается в общем случае из теплопроводности, обусловленной фононами, и теплопроводности, обусловленной свободными электронами: К= Креш.эл., при этом для металлов Кэл.реш.=102.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Вычислить теплоемкость единицы объема кристалла бромистого алюминия AlBr3 по классической теории теплоемкости. Определить теплоту, необходимую для нагревания кристалла AlBr3 массой 10 г на DТ=5К.

РЕШЕНИЕ.

Темплоемкость единицы объема кристалла можно определить по формуле С = Сm/Vm, где Сm и Vm теплоемкость и объем одного моля вещества. Молярная теплоемкость определяется по закону Неймана-Коппа Сm=3nR, где n - число атомов в соединении. Для AlBr3 n = 4. Объем Vm можно выразить через плотность кристалла Vm = m/r. Масса моля AlBr3 равна m = 3mBr + mAl. Подставим эти выражения в расчетную формулу для теплоемкости

С = 12Rr/(3mBr+mAl).

Из таблицы находим плотность этого кристалла r = 3,01 103кг/м3, mBr = 80 г/моль; mAl = 27 г/моль. С учетом этих значений теплоемкость

С = РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru

Теплота DQ, необходимая для нагревания тела от Т1 до Т2, может быть вычислена по формуле

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru

поскольку по классической теории молярная теплоемкость не зависит от температуры. Тогда окончательно:

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru

ОТВЕТ: РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru

Пример 2: Пользуясь теорией теплоемкости Эйнштейна, определить изменение внутренней энергии одного килоатома кристалла при нагревании его от Т1 = 0 до Т2 = 0,1qЕ. Характеристическую температуру Эйнштейна qЕ принять для данного кристалла равной 300 К.

РЕШЕНИЕ.

Внутренняя энергия одного атома кристалла в квантовой теории теплоемкости Эйнштейна может быть определена по формуле:

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru .

Изменение внутренней энергии:

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru .

Для низких температур (Т<<qЕ) теплоемкость определяется по формуле:

Сm = 3R(qЕ/T)2exp(-qЕ/T).

Подставим это выражение в выражение для внутренней энергии:

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru .

Введем новую переменную х = qЕ/Т. Тогда dx = - (qЕ/T2)dT, температура Т1 соответствует х1®¥, Т2 - x2 = qЕ/0,1qЕ = 10.

Окончательно получим

РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru .

ОТВЕТ: 340 Дж.

Пример 3: Оценить величину термического коэффициента расширения твердого тела, считая, что коэффициент ангармоничности g @ b/2r0. При оценке принять модуль Юнга Е = 100 ГН/м2, межатомное расстояние r0 = 0,3 нм.

РЕШЕНИЕ.

Теоретически значение термического коэффициента расширения a можно оценить по формуле a = gkБ/b2r0. С учетом приближенного равенства g » b/2r0 формула приобретает вид a » kБ/2b r02 . Используя соотношение

b=r0 Е, окончательно получаем

a » kБ/(2 Е r0 3)= 1,38 10-23/2 100 109(0,3 10-9)3 = 2,6 10-6 К-1.

ОТВЕТ: 2,6 10-6 К-1.

ЗАДАЧИ, РЕКОМЕНДУЕМЫЕ ДЛЯ САМОСТОЯТЕЛЬНОГО

РЕШЕНИЯ

6.1. Удельная теплоемкость алюминия при 200С равна 896 Дж/(кг К). Выполняется ли при этой температуре для него закон Дюлонга и Пти?

ОТВЕТ: не выполняется.

6.2. Удельные теплоемкости свинца и алюминия при постоянном объеме и температуре 200С составляют соответственно 126 и 896 Дж/(кг К). Молярная масса свинца равна 207,21 г/моль, алюминия – 26,99 г/моль. Вычислить теплоемкости одного моля для каждого из них и сравнить со значениями, полученными по закону Дюлонга и Пти.

ОТВЕТ: Сv Al = 24,17 Дж/моль×град; Cv Pb= 26,1 Дж/моль×град.

6.3. Рассчитать значение теплоемкости твердого тела по теории Эйнштейна.

ОТВЕТ: РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru

6.4. Имеется система N молекул, которые могут находиться в двух различных энергетических состояниях, отличающихся друг от друга значением энергии DЕ. Определить теплоемкость такой системы.

ОТВЕТ: РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru

6.5. Почему электронная теплоемкость неметаллов практически равна нулю?

6.6. Показать, что теплоемкость по теории Дебая достигает значения 3R при высоких температурах, когда qД/Т ®0.

6.7. Показать, что при низких температурах теплоемкость твердого тела по теории Дебая пропорциональна кубу абсолютной температуры.

6.8. Характеристическая температура золота 170 К. Определить постоянную квазиупругой силы. Молярная масса золота равна 197,2 г/моль.

ОТВЕТ: ¡ = 88,7 кг/сек2.

6.9. Теплоемкость серебра при 10К равна 199 Дж/(кмоль К). Определить характеристическую температуру.

ОТВЕТ: q = 213 К.

6.10. Найти в общем случае разность теплоемкостей тела при постоянном давлении и постоянном объеме.

ОТВЕТ: РАЗДЕЛ 6. Тепловые свойства твердых тел - student2.ru

6.11. С помощью общих термодинамических соотношений установить связь между коэффициентом объемного расширения, объемной сжимаемости и термической упругостью твердого тела.

ОТВЕТ: a/c = gР.

6.12. Показать, что при низких температурах коэффициенты термического расширения кристаллов стремятся к нулю.

6.13. Определить изменение внутренней энергии кристалла никеля при нагревании от температуры 00С до 2000С. Масса кристалла составляет 10 г, молярная масса равна 58,69 г/моль.

ОТВЕТ: 1,70 кДж.

6.14. Определить теплоту, необходимую для нагревания кристалла NaCl массой m = 10 г на DТ = 1К. Рассмотреть два случая:

1) нагревание происходит от температуры Т1 = qД;

2) нагревание происходит от температуры Т2 = 1К.

Характеристическую температуру Дебая для NaCl принять равной 320К. Молярная масса натрия равна 22,99 г/моль, хлора 35,45 г/моль.

ОТВЕТ: Dq1 = 4,08 Дж; Dq2 = 38 мкДж.

6.15. Показать, что если смещение частиц в кристаллической решетке твердого тела подчиняется закону Гука F(x) = - b x, то тепловое расширение отсутствует.

6.16. Определить энергию и теплоемкость системы, состоящей из N = 1025 классических трехмерных независимых гармонических осцилляторов. Температура Т = qД =300 К.

ОТВЕТ: 124 кДж; 414 Дж/К.

6.17. Определить энергию системы, состоящей из N= 1025 квантовых трехмерных независимых осцилляторов при температуре Т = qЕ = 300 К.

ОТВЕТ: 72,2 кДж.

6.18. Используя квантовую теорию теплоемкости Эйнштейна, вычислить изменение внутренней энергии одного моля кристалла при нагревании его на DТ =2К от температуры Т = 1/2 qЕ.

ОТВЕТ: 36 Дж.

6.19. Определить максимальную частоту собственных колебаний в кристалле золота по теории Дебая. Характеристическая температура золота qД = 180К.

ОТВЕТ: 2,37×1013 Гц.

6.20. Используя квантовую теорию теплоемкости Дебая, вычислить изменение внутренней энергии одного моля кристалла при нагревании его на DТ = 2К от температуры Т = 1/2 qД.

ОТВЕТ: 484,7 Дж.

6.21. Пользуясь теорией теплоемкости Дебая, определить изменение внутренней энергии одного моля кристалла при нагревании его от нуля до Т = 0,1qД. Характеристическую температуру Дебая принять равной 300К, считать, что Т<<qД.

ОТВЕТ: 14,54 Дж.

6.22. Вычислить по теории Дебая нулевую энергию одного моля кристалла меди. Характеристическая температура qД для меди равна 320К.

ОТВЕТ: 2,2×10-21 Дж.

6.23. Какова удельная теплоемкость цинка при 1000С? Молярная масса цинка равна 65,38 г/моль.

ОТВЕТ: 0,382×10-3 Дж/кг×К.

6.24. Найти коэффициент объемного расширения В для анизотропного кристалла, коэффициенты линейного расширения которого по трем взаимно перпендикулярным направлениям составляют a1= 1,25 10-5К-1; a2=1,10 10-5 К-1; a3=1,15 10-5 К-1.

ОТВЕТ: 3,40×10-5 К-1.

6.25. Вычислить по теории Эйнштейна нулевую энергию, которой обладает один моль кристалла цинка. Характеристическая температура qЕ для цинка равна 230К.

ОТВЕТ: 2,2×10-21 Дж.

6.26. Вычислить среднюю длину свободного пробега фононов в кварце при некоторой температуре, если при той же температуре коэффициент теплопроводности l = 13 Вт/(м К), молярная теплоемкость Сm = 44 кДж/(кмоль К) и усредненной значение скорости звука <u> = 5000 м/с, плотность кварца r = 2,65 103 кг/м3.

ОТВЕТ: 4,0 нм.

6.27. Каково максимальное изменение потенциальной энергии атомов в кристаллической решетке твердого тела при гармонических колебаниях, если амплитуда тепловых колебаний тела составляет 5% среднего межатомного расстояния. Среднее межатомное расстояние принять равным 0,3 нм, модуль Юнга Е = 100 Гпа.

ОТВЕТ: 3,4 ×10-21Дж.

6.28. Вычислить электронную теплоемкость для меди при температуре 2 и 1000К и сравнить ее с теплоемкостью решетки при тех же температурах. Характеристическая температура меди равна 316К, g = 6,95×10-4 Дж/моль×К.

ОТВЕТ: 1). Сvэл = 14,56×10-4 Дж/моль×град; Сvэл = 0,728 Дж/моль×град; Сvр = 4,8×10-4 Дж/моль×град; Сvр = 24,96 Дж/моль×град.

Наши рекомендации