Раздел 1. Основы работы в моделирующей программе Electronics Workbench

Содержание работы

1. Запустить программу EWB.

2. Из панели контрольно-измерительных приборов (Instruments) выбрать осциллограф Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru и разместить его на рабочее поле.

3. Установить режим однократной развертки - “Pause after each screen”.

4. Подключить источник Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru импульсов (библиотека компонентов Sources) с параметрами по умолчанию 50%,1 кГц, 5В.

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

4.1. Измерить амплитуду и период импульсов, вычислить скважность импульсов n=T/TИМП.

Осциллограф использовать в режиме однократной развертки Y/T, синхронизация Auto, вход DC.

4.2. Измерить время нарастания и спада импульсов.

Результаты пунктов 4.1. и 4.2. занести в таблицу:

Амплитуда А, [В]  
Период Т, [мс]  
Длительность импульса ТИМП, [мкс]  
Скважность n  
Время нарастания ТНАР., [мкс]  
Время спада ТСПАД, [мкс]  

5. Собрать цепь, содержащую источник прямоугольных импульсов и интегрирующее RC звено. Ко входу звена подключить зеленым проводом канал А осциллографа, к выходу – канал В красным проводом.

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

5.1. Определить длительность импульса, период следования, зарисовать осциллограммы, определить нарастание выходного сигнала за время импульса. Полученные результаты занести в таблицу:

Период Т, [мс]  
Длительность импульса ТИМП, [мкс]  
Нарастание вых. сигнала, [В]  

6. Заменить источник прямоугольных импульсов на источник синусоидальных импульсов Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru с параметрами 5В, 1 кГц.

6.1. Определить амплитуду входного и выходного сигналов, коэффициент передачи звена на выбранной частоте и фазовый сдвиг.

Амплитуда входного сигнала, [В]  
Амплитуда выходного сигнала, [В]  
Фазовый сдвиг j , [мкс]  
Коэффициент передачи звена К  

6.2. Перейти из режима синхронизации Auto в режим А, затем в режим В. Зарисовать и объяснить полученные осциллограммы.

6.3. Перейти в режим развертки осциллографа В/А. Зарисовать полученную картину и объяснить результат.

6.4. Входы осциллографа переключить в режим АС. Перейти в режим непрерывной развертки (выключить флажок «Pause after each screen»), Y/T, синхронизация Auto. Пронаблюдать за выходным сигналом в течение нескольких циклов развертки. Объяснить наблюдаемое явление. Почему осциллограмма входного сигнала не меняется, хотя оба входа осциллографа используются в одинаковом режиме АС?

6.5. Повторить пункт 6.1.-6.4., изменив частоту генератора с 1 кГц на 2 кГц.

7. Заменить интегрирующее звено цепью простейшего выпрямителя (использовать режим однократной развертки – « Pause after each screen»):

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

7.1. Зарисовать осциллограммы, определить максимальное напряжение на выходе во время положительной и отрицательной полуволны входного напряжения. Почему во время отрицательной полуволны на выходе имеется некоторое напряжение, хотя диод закрыт, а во время положительной полуволны выходное напряжение всегда меньше входного?

8. Содержание отчета.

8.1. Таблицы результатов измерений п. 4.1., 4.2., 5.1., 6.1.

8.2. Осциллограммы п.6.2., 6.3., 6.4. и пояснение к ним.

8.3. Что изменилось в осциллограммах при повышении частоты входного сигнала с 1 кГц до 2 кГц?

8.4. Осциллограммы и ответ на вопросы п. 7.1.

Раздел 4. Усилители

1 Ознакомление с работой операционного усилителя

1.1 Соберите схему инвертирующего усилителя на ОУ с К=10.Для этого используйте модель ОУ с тремя выводами из группы ANA и резисторы в диапазоне 1-100 кОм. Эта модель работает без подключения напряжения питания, что упрощает схему. Ко входу подключите генератор переменного напряжения 1 В, частотой 1000 Гц и осциллограф ко входу и выходу усилителя. Установите режим однократной развертки.

1.1.1 Пронаблюдайте с помощью осциллографа инверсию выходного сигнала и определите реальный коэффициент усиления усилителя.

1.1.2 Постоянно увеличивая входное напряжение, определите при каком значении Uвых начинается ограничение выходного сигнала.

1.2. Соберите схему неинвертирующего усилителя с К=10 и повторите п.п. 1.1.1, 1.1.2

2. Исследование схемы многокаскадного двухканального усилителя.

2.1. Выберите схему усилителя STEREOAMP из библиотеки программы EWB. Для программы EWB 5.0 путь: File-Open-Samples-STEREOAMP, для EWB 5.12:File - Open - Circuit - Stereoamp. В EWB 5.0 при открытии файла появляется меню Models Clash, в нем выберите Use circuits model.

2.1.1. С помощью мультиметра измерьте напряжения Uбэ и Uкэ для каждого транзистора. По результатам измерений определите, в какой области находятся рабочие точки транзисторов.

2.1.2. Определите коэффициенты усиления каналов стереоусилителя. Почему они разные? Какая причина возникновения нелинейных искажений в верхнем канале усилителя (канал А осциллографа)? В каком каскаде возникают искажения?

2 1.3. Уменьшите входное напряжение так, чтобы обе осциллограммы визуально казались неискаженными. После этого выровняйте усиление обоих каналов усилителя и измерьте коэффициент усиления.

Поскольку оба каскада теперь идентичны, то в дальнейшем исследуется только один из каскадов.

2.1.4. Получите АЧХ усилителя с помощью измерителя АЧХ-ФЧХ (BodePlotter). Определите нижнюю граничную частоту,на которой спад АЧХ составляет 6дБ. Что вызывает спад АЧХ в области нижних частот?

2.1.5. Переключите канал В осциллографа на вход усилителя. По осциллограммам сигналов определите приблизительно сдвиг фаз в градусах между выходным и входным напряжениями. Для нормальной работы осциллографа при выполнении этого пункта необходимо отключить клемму OUT измерителя АЧХ

2.1.6. Уточните величину сдвига фаз на частоте генератора входного сигнала с помощью измерителя ФЧХ.

2.1.7. Исследуйте влияние нагрузки, подключаемой к коллектору выходного транзистора, на величину выходного напряжения усилителя. Определите величину нагрузочного резистора, при которой выходное напряжение снижается на 20%.

Содержание отчета: Результаты измерений п.п 2.1.1-2.1.7 и ответы на все поставленные вопросы.

Содержание отчета.

7.1. Результаты выполнения п. 1.1, 1.2.

7.2. Исходное логическое выражение, его минимизация и схемная реализация по п. 2.2.

7.3. Аналогично для п. 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5.

7.4. Пункт 3.1.6. продемонстрировать при сдаче отчета.

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Параметры функционального генератора:

- вид входных сигналов – прямоугольный;

- частота – 50 Гц;

- амплитуда входных сигналов – 10 В

7.5. Схема рис. 1 и результаты п.п. 4.1.1.

7.6. Схема рис. 2 и результаты п.п. 5.1.1.

7.7. Синтезированная схема задержки и результаты п.п. 6.1.1.

Раздел 6. Триггеры

1. Триггеры на логических элементах.

1.1. Асинхронный R-S триггер с инверсными входами.

Соберите схему триггера на логических элементах 2И-НЕ и проверьте таблицу его состояний.

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Таблица 1
tn tn+1
Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Qn+1
 
 
 
 

1.2. Тактируемый (синхронный) R-S триггер

Соберите схему триггера на логических элементах 2И-НЕ и проверьте таблицу его состояний.

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Таблица 2
S R T Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Qn+1
     
     
     
     
х х      

1.3. D-триггер

Соберите схему триггера на логических элементах 2И-НЕ и проверьте таблицу его состояний.

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Таблица 3
D Т Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Qn+1
     
     
     
     

1.4. Задача: для R-S триггера с инверсными входами даны переменные входные параметры X и Y, изменение которых во времени показано на рис.1. По номеру своего варианта выбрать вид входных сигналов из таблицы:

№ варианта
R x y x Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru y
S y x Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru y x Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Соберите схему R-S триггера с инверсными входами, подав на входы R и S коды с генератора слова, а на логический анализатор - входы R, S и выходы Q, Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru . Коды генератора слова следует задавать так: биты S и R соответствуют битам D0 и D1, остальные биты D2…D15 равны 0. Выбрав по номеру варианта последовательность битов R и S для каждого Тшаг, следует записать слово в шестнадцатиричном коде. Таким образом, в генератор слова вводится 10 слов (Tшаг=10).

Таблица 4
№ варианта
R Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru
S Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Например, в первом шаге R=0, S=1, следовательно в двоичном коде: 0000.0000.0000.0001 или в шестнадцатеричном 0001 – первый код генератора слова. Во втором шаге R=1, S=0: 0000.0000.0000.00102 = 000216 – второй код генератора слова и т.д.

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Получите с помощью логического анализатора временные диаграммы для R, S, Q, Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru . Зарисуйте их.

2. Интегральные триггеры.

2.1. D-триггер 74175 (триггер-защелка).

Выберите из библиотеки Digitalинтегральную схему D-триггера 74175 (Quad D-type FF (clr)) Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru . Данная интегральная схема содержит четыре двухступенчатых Д-триггера. На выходы 1Q, 2Q, 3Q и 4Q поступает информация с входов 1D, 2D, 3D, и 4D при значении стробсигнала CLK=1 информация “защелкивается”. Сигнал CLR’=0 сбрасывает триггер в исходное состояние. Питание микросхемы: 8 (GND) – общий провод, 16 (VCC)- Uпит.

2.1.1. Задание: Исследуйте поведение триггера, воспользовавшись одним из входов Di и соответствующим выходом Qi. В какой момент происходит защелкивание информации?

Нарисуйте схему подключения ИС 74175 для записи на выходах ее кода Q4Q3Q2Q1=0011. Соберите схему и зафиксируйте на выходах заданный код.

2.2. JK-триггер 7472.

Выберите из библиотеки Digital интегральную схему JK-триггера 7472 (AND-gated JK MS-SLV FF (pre, clr)). Данная интегральная схема содержит: входы - J1, J2, J3, К1, К2, К3; выходы – Q и Q’, а также стробсигнал CLK, сброс – CLR’ и вход предустановки PRE’. Питание микросхемы: 7 – общий провод, 14 - Uпит.

2.2.1. Ознакомьтесь с работой JK-триггера. Запишите таблицу состояний триггера. Какие строчки таблицы соответствуют работе JK-триггера в качестве RS-триггера и Т-триггера?

2.2.2. Задание: Соберите схему включения триггера 7472. На выходы Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru подключите светодиоды. Проверьте все варианты таблицы состояний. Соберите схему D-триггера на JK-триггере и проверьте ее работу. В качестве инвертора воспользуйтесь соответствующим логическим элементом.

Содержание отчета.

3.1. Результаты п. 1.1, 1.2., 1.3., 1.4.

3.2. Схема и результаты п. 2.1.1.

3.3. Таблица п. 2.2.1 и пояснение к ней

Раздел 1. Основы работы в моделирующей программе Electronics Workbench

Описание контрольно-измерительных приборов в программе EWB.

Панель контрольно-измерительных приборов (Instruments) Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru находится над полем рабочего окна программы EWB и содержит цифровой мультиметр, функциональный генератор, двухканальный осциллограф, измеритель амплитудно-частотных и фазочастотных характеристик:

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Общий порядок работы с приборами такой: иконка прибора при помощи мыши переносится на рабочее поле и подключается проводниками к исследуемой схеме. Для приведения прибора в рабочее (развернутое) состояние необходимо дважды щелкнуть курсором по его иконке или вызвать его контекстное меню и выбрать пункт Open .

Осциллограф (Oscilloscope)

Описание осциллографа. Лицевая панель осциллографа.

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Осциллограф имеет два канала ( Channel) А и В с раздельной регулировкой смещения по вертикали (Yposition). Выбор режима по входу осуществляется нажатием кнопок AC, 0, DC. Режим AC предназначен для наблюдения только сигналов переменного тока (режим “закрытого входа”, поскольку на входе усилителя осциллографа включается разделительный конденсатор). В режиме 0входной зажим замыкается на землю. В режиме DC (по умолчанию) можно производить осциллографические измерения как постоянного, так и переменного тока (режим “открытого входа”, поскольку входной сигнал поступает на вход вертикального усилителя непосредственно).

Режим развертки выбирается кнопками Y/T, B/A, A/B. В режиме Y/T (обычный режим, включен по умолчанию) реализуется следующий режим развертки : по вертикали – напряжение сигнала, по горизонтали – время; в режиме B/A : по вертикали – сигнал канала В, по горизонтали – сигнал канала А в режиме A/B: по вертикали - сигнал канала А, по горизонтали – сигнал канала В.

В режиме развертки Y/T длительность развертки ( Timebase) может быть задана в диапазоне от 0,1 нс/дел (ns/div ) до 1 с/дел ( s/div) с возможностью установки смещения в тех же единицах по горизонтали, то есть по оси X ( X position).

В режиме Y/T предусмотрен также ждущий режим Trigger с запуском развертки ( Edge ) по переднему или заднему фронту запускающего сигнала при регулируемом уровне (Level ) запуска, а также в режиме Auto, от канала А, от канала В или от внешнего источника (Ext), подключаемого к зажиму в блоке управления (Trigger). Названные режимы запуска развертки выбираются кнопками : AUTO, A, B, EXT.

Можно установить режим однократной развертки через системное меню Analysis, опция Analysis Options на закладке Instruments установить флаг “Pause after each screen”. Для режима непрерывной развертки – выключить флаг “Pause after each screen”. В программе EWB по умолчанию стоит режим непрерывной развертки.

Соединительным проводам можно задать цвет. Выделив нужный провод, щелкните правой кнопкой мыши и из появившегося контекстного меню выберите пункт Wire Properties (Свойство проводов), задайте цвет.

Заземление осциллографа осуществляется с помощью клеммы Ground в правом верхнем углу прибора.

При нажатии на кнопку Expand лицевая панель осциллографа существенно меняется:

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

Лицевая панель осциллографа в режиме EXPAND

Увеличивается размер экрана, появляется возможность прокрутки изображения по горизонтали и его сканирования с помощью вертикальных визирных линий (синего и красного цвета), которые за ушки можно установить в любое место экрана, при этом в индикаторных окошках под экраном приводятся результаты измерения напряжения, временных интервалов и их приращений (между визирными линиями).

Изображение можно инвертировать нажатием кнопки Reverse и записать данные в файл нажатием кнопки Save. Возврат к исходному состоянию осциллографа – нажатием кнопки Reduce.

Содержание работы

1. Запустить программу EWB.

2. Из панели контрольно-измерительных приборов (Instruments) выбрать осциллограф Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru и разместить его на рабочее поле.

3. Установить режим однократной развертки - “Pause after each screen”.

4. Подключить источник Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru импульсов (библиотека компонентов Sources) с параметрами по умолчанию 50%,1 кГц, 5В.

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

4.1. Измерить амплитуду и период импульсов, вычислить скважность импульсов n=T/TИМП.

Осциллограф использовать в режиме однократной развертки Y/T, синхронизация Auto, вход DC.

4.2. Измерить время нарастания и спада импульсов.

Результаты пунктов 4.1. и 4.2. занести в таблицу:

Амплитуда А, [В]  
Период Т, [мс]  
Длительность импульса ТИМП, [мкс]  
Скважность n  
Время нарастания ТНАР., [мкс]  
Время спада ТСПАД, [мкс]  

5. Собрать цепь, содержащую источник прямоугольных импульсов и интегрирующее RC звено. Ко входу звена подключить зеленым проводом канал А осциллографа, к выходу – канал В красным проводом.

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

5.1. Определить длительность импульса, период следования, зарисовать осциллограммы, определить нарастание выходного сигнала за время импульса. Полученные результаты занести в таблицу:

Период Т, [мс]  
Длительность импульса ТИМП, [мкс]  
Нарастание вых. сигнала, [В]  

6. Заменить источник прямоугольных импульсов на источник синусоидальных импульсов Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru с параметрами 5В, 1 кГц.

6.1. Определить амплитуду входного и выходного сигналов, коэффициент передачи звена на выбранной частоте и фазовый сдвиг.

Амплитуда входного сигнала, [В]  
Амплитуда выходного сигнала, [В]  
Фазовый сдвиг j , [мкс]  
Коэффициент передачи звена К  

6.2. Перейти из режима синхронизации Auto в режим А, затем в режим В. Зарисовать и объяснить полученные осциллограммы.

6.3. Перейти в режим развертки осциллографа В/А. Зарисовать полученную картину и объяснить результат.

6.4. Входы осциллографа переключить в режим АС. Перейти в режим непрерывной развертки (выключить флажок «Pause after each screen»), Y/T, синхронизация Auto. Пронаблюдать за выходным сигналом в течение нескольких циклов развертки. Объяснить наблюдаемое явление. Почему осциллограмма входного сигнала не меняется, хотя оба входа осциллографа используются в одинаковом режиме АС?

6.5. Повторить пункт 6.1.-6.4., изменив частоту генератора с 1 кГц на 2 кГц.

7. Заменить интегрирующее звено цепью простейшего выпрямителя (использовать режим однократной развертки – « Pause after each screen»):

Раздел 1. Основы работы в моделирующей программе Electronics Workbench - student2.ru

7.1. Зарисовать осциллограммы, определить максимальное напряжение на выходе во время положительной и отрицательной полуволны входного напряжения. Почему во время отрицательной полуволны на выходе имеется некоторое напряжение, хотя диод закрыт, а во время положительной полуволны выходное напряжение всегда меньше входного?

8. Содержание отчета.

8.1. Таблицы результатов измерений п. 4.1., 4.2., 5.1., 6.1.

8.2. Осциллограммы п.6.2., 6.3., 6.4. и пояснение к ним.

8.3. Что изменилось в осциллограммах при повышении частоты входного сигнала с 1 кГц до 2 кГц?

8.4. Осциллограммы и ответ на вопросы п. 7.1.

Наши рекомендации