Сплавы высокого сопротивления
Общие сведения. Определение понятия «сплав высокого сопротивления» и области применения этих сплавов уже были указаны выше (стр. 186). При использовании этих сплавов для электроизмерительных приборов и образцовых резисторов, помимо высокого удельного сопротивления р, требуются высокая стабильность р во времени, малый температурный коэффициент удельного сопротивления, и малый коэффициент термоЭДС в паре данного сплава с медью. Сплавы для электронагревательных элементов должны длительно работать на воздухе при высоких температурах (иногда до 1000 °С и даже выше). Кроме того, во многих случаях требуется технологичность сплавов — возможность изготовления из них гибкой проволоки, иногда весьма тонкой (диаметром порядка --сотых долей миллиметра). Наконец, желательно, чтобы сплавит—используемые для приборов, производимых в больших количествах, — реостатов, электроплиток, электрических чайников, паяльников, — были дешевыми и по возможности не содержали дефицитных компонентов.
Манганин. Это наиболее типичный и широко применяемый для изготовления образцовых резисторов сплав. Примерный состав его: Си —85%, Мп—12%, Ni — 3 %; название происходит от наличия в нем марганца (латинское manganum); желтоватый цвет объясняется большим содержанием меди. Значение р манганина 0,42—0,48 мкОм-м; ар весьма мал, (5 —30)-10~с К"1; коэффициент термо-ЭДС в паре с медью всего лишь 1—2 мкВ/К. Манганин может вытягиваться в тонкую (диаметром до 0,02 мм) проволоку: часто манганиновая проволока выпускается с эмалевой изоляцией. Для обеспечения малого значения сср и стабильности р во времени манганиновая проволока подвергается специальной термообработке (отжиг д__вакууме при температуре 550—600 °С с последующим медленным охлаждением; намотанные катушки иногда дополнительно отжигаются при 200 °С. Предельно длительно допустимая рабочая температура сплавов манганина не более 200 °С; механические свойства: ар = 450—600 МПа, МП = 15—30 %. Плотность манганина 8,4 Мг/м3.
Константин — сплав, содержащий около 60 % меди и 40 % никеля; этот состав отвечает минимуму ар в системе Си —Ni при довольно высоком значении р (см. рис. 7-3, а и б). Название «константан» объясняется значительным постоянством р при изменении температуры [для сплавов типа константана ар при нормальной температуре составляет минус (5—25)-10"в К"' при р = 0,48— 0,52 мкОмм].
Нагревостойкость константана выше, чем манганина: константан можно применять для изготовления реостатов и электронагревательных элементов, длительно работающих при температуре 450 °С.
Существенным отличием константана от манганина является высокая термо-ЭДС константана в паре с медью, а также с железом: его коэффициент термо-ЭДС в паре с медью составляет 45—55 мкВ/К (рис. 7-27). Это является недостатком при использовании констан-тановых резисторов в измерительных схемах; при наличии разности температур в местах контакта константановых проводников с медными возникают термоэлектродвижущие силы, которые могут явиться источником ошибок, особенно при мостовых и потенцио-метрических методах измерений. Зато константан с успехом можег быть использован при изготовлении термопар, служащих для измерения температуры, если последняя не превышает нескольких сотен градусов (рис. 7-27), кривые 3 и 4).
Широкому применению констапгана препятствует большое содержание в его составе дорогого и дефицитного никеля.
Сплавы на основе железа. Эти сплавы в основном применяются для электронагревательных элементов. Высокая нагревостойкость таких элементов объясняется введением в их состав достаточно больших количеств металлов, имеющих высокое значение объемного коэффициента оксидации К (стр. 183), потому при нагреве на воздухе образующих практически сплошную оксидную пленку. Такими металлами являются никель, хром и алюминий. Железо, как уже отмечалось выше, имеет объемный коэффициент оксидации меньше единицы и потому при нагреве легко окисляется (см. рис. 7-10); чем больше содержание железа в сплаве, например, с Ni и Сг, тем менее нагревостоек этот сплав.
Сплавы системы Fe — Ni — Сг называются нихромами или (при повышенном содержании Fe) ферронихромами (табл. 7-6); сплавы системы Fe — Сг — А1 называются фехралями и хромалями (табл. 7-7). Происхождение названий этих сплавов не требует разъяснения. Следует отметить, что для самых различных сплавов по
принятым в СССР стандартам часто применяются условные обозначения, составляемые из букв и чисел. Буквы эти обозначают наиболее характерные элементы, входящие в состав сплава, причем буква входит в название элемента, но не обязательно является первой буквой этого названия (например, Б обозначает ниобий, В —вольфрам, Г —марганец, Д —медь, К —кобальт, Л —бериллий, Н — никель, Т —титан, X —хром, Ю —алюминий и т. п.), а число — приблизительное содержание данного компонента в сплаве (в процентах по массе); дополнительные цифры в начале обозначения определяют повышенное (цифра 0) или пониженное качество сплава. Так, в табл. 7-7 обозначение Х23Ю5 соответствует сплаву с содержанием хрома 23 % и алюминия —около 5 %.
Помимо скорости окисления того или иного чистого металла или компонента счлава большое влияние на срок жизни нагревательного элемента, работающего на воздухе, оказывают свойства образующегося оксида. Если он летуч, то он удаляется с поверхности металла и не может защитить оставшийся металл от дальнейшего окисления. Так, оксиды вольфрама и молибдена легко улетучиваются, а потому эти металлы не могут работать в накаленном состоянии пшмюетупе кислорода. Если же оксид нелетуч, то он при окислении образует слой на поверхности металла.
Стойкость хромо-никелевых сплавов при высокой температуре в воздушной среде объясняется близкими значениями температурных коэффициентов линейного расширения этих сплавов и их оксидных пленок. Поэтому растрескивание оксидных пленок имеет место только при резких сменах температуры; тогда при последующих нагревах кислород воздуха будет проникать в образовавшиеся трещины и производить дальнейшее окисление сплава. Поэтому при многократном кратковременном включении электронагревательного элемента из нихрома он может перегореть значительно скорее, чем при непрерывной работе элемента при той же температуре.
Срок жизни элементов из нихрома и других нагревостойких сплаг, ,г? существенно укорачивается также при наличии колебаний сечения проволоки: в местах с уменьшенным сечением («шейки») нагревательные элементы перегреваются1 и легче перегорают.
Длительность работы электронагревательных элементе» из нихрома и аналогичных сплавов может быть во много раз увеличена при исключении доступа кислорода к поверхности проволоки. В трубчатых нагревательных элементах спираль из сплава высокого сопротивления проходит по оси трубки из стойкого к окислению металла; промежуток между проволокой и трубкой заполняется порошком диэлектрика с высокой теплопроводностью (например, магнезией MgO). При дополнительной протяжке такой трубки ее внешний диаметр уменьшается, магнезия уплотняется и образует механически прочную изоляцию внутреннего проводника. Такие нагревательные элементы применяются, например, в электрических кипятильниках; они могут работать весьма длительно без повреждений.
Некоторые свойства сплавов типа нихрома даны в табл. 7-6. Их механические параметры: ар = 650—700 МПа, МП = 25—30 %. Нихромы весьма технологичны, их можно легко протягивать в сравнительно тонкую проволоку или ленту, они имеют высокую рабочую температуру. Однако, как и в. константане, в этих сплавах велико содержание дорогого и дефицитного компонента — никеля.
Хромо-алюминиевые сплавы (фехраль, хромаль) намного дешевле нихромов, так как хром и алюминий сравнительно дешевы и легко доступны. Однако эти сплавы менее технологичны, более тверды и хрупки, из них могут быть получены проволоки и ленты лишь большего поперечного сечения, чем из нихромов. Поэтому эти сплавы в основном используются в электротермической технике для электронагревательных устройств большой мощности и промышленных электрических печей. Некоторые свойства этих сплавов приведены в табл. 7-7.
СПЛАВЫ ДЛЯ ТЕРМОПАР
Для изготовления термопар применяются следующие сплавы: капель (56 % Си и 44 % N1), алюмель (95% Ni, остальное Al, Si и Mg), хромель (90 % Ni и 10 % Сг), пттинвродай (90 % Pt и 10 % Rh).
Термопары могут применяться для измерения следующих температур: платано родий — платина до 1600С,
медь — константан и медь — капель — до> 360С.
Наибольшую термо-ЭДС при данной разности температур развивает термопара хромель — копель. Знак термо-ЭДС у приведенных на рис. 7-27 термопар таков, что в холодном спае ток идет от первого названного в паре материала ко второму (т. е-, от хромел» к копелю, от меди: к константаиу), а: в горячем спае — в обратном направлении.
Весьма значительными коэффициентами термо-ЭДС обладают некоторые полупроводниковые материалы, которые, в частности, могут использоваться для изготовления термоэлектрических генераторов (см. стр. 266).
ТЕНЗОМЕТРИЧЕСКИЕ СПЛАВЫ
Эта сплавы применяются в преобразователях деформации различных кон~ струкцдй иод действием механических (обычно растягивающих) усилий. Действи таких преобразователей основано на изменении сопротивления при деформациях тензометрического элемента.
Основным материалом для тензопреобразователей, работающих при сравнительно невысоких температурах, является описанный выше константан.
КОНТАКТНЫЕ МАТЕРИАЛЫ
Наиболее ответственными контактами, применяемыми в электротехнике, являются контакты, служащие для периодического замыкания и размыкания электрических цепей (разрывные, а также скользящие контакты).
Материалы для разрывных контактов, применяемые для размыкания цепей при больших силах тока и высоких напряжениях, должны обеспечивать высокую надежность (исключение возможности обгорания контактирующих поверхностей, а также приваривания их друг к другу под действием возникающей при разрыве контакта электрической дуги) при малом переходном электрическом сопротивлении контакта в замкнутом состоянии.
В качестве контактных материалов для разрывных контактов, помимо чистых тугоплавких металлов, применяются различные сплавы и металлокерамические композиции. Большое применение имеет материал системы Ag—CdO при содержании оксида кадмия 12—20 % по массе. Такой материал получается при нагреве в окислительной атмосфере сплава серебро — кадмий. Для разрывных контактов в установках большой мощности применяют композиции kg с Со, Ni, Сг, VV, Мо и Ta^Cu__c W и Мо; Аи с W и Мо.
^Материалы для скользящих контактов должны обладать высокой стойкостью к истиранию. Для этой цели применяют холоднотянутую (твердую) медь, берилли-евую бронзу (см. выше), а также материалы системы Ag—-CdO. Щетки, служащие для создания скользящего контакта во вращающихся электрических машинах, описаны ниже на стр. 226.
Вопрос 34
ПРИПОИ
Припои представляют собой специальные сплавы, применяемые при пайке. Пайка осуществляется или с целью создания механически прочного (иногда герметичного) шва, или с целью получения постоянного электрического контакта с малым переходным сопротивлением. При пайке места соединения и припой нагреваются. Так как припой имеет температуру плавления значительно меньшую, чем у соединяемых металлов, то он плавится, в то время как спаиваемые металлы остаются твердыми. На границе соприкосновения расплавленного припоя и твердого металла происходят сложные физико-химические процессы. Припой смачивает металл, растекается по нему и заполняет зазоры между соединяемыми деталями.
При этом припой диффундирует в основной металл, основной металл растворяется в припое, в результате чего образуется промежуточная прослойка, которая после застывания соединяет детали в одно целое.
Припои принято делить на две группы: мягкие и твердые. К мягким относятся припои с температурой плавления до 400 °С, а к твердым— припои с температурой плавления свыше 500 °С. Кроме температуры плавления, припои существенно различаются и по механическим свойствам. Мягкие припои имеют предел прочности при растяжении ар не выше 50—70 МПа, а твердые — до 500 МПа.
Тип припоя выбирают, сообразуясь с родом спаиваемых металлов или сплавов, требуемой механической прочностью, коррозионной стойкостью, стоимостью и — при пайке токоведущих частей — с удельной электрической проводимостью припоя.
Мягкими припоями в основном являются припои оловянно-свинцовые (марка ПОС) с содержанием олова от 18 % (ПОС-18) до 90 % (ПОС-90). Удельная проводимость этих припоев составляет 9—13 % удельной проводимости стандартной меди, а температурный коэффициент линейного расширения а; — (26—27)-10 в Ю. Существуют также мягкие припои с добавками алюминия, серебра. Еще более легкоплавки припои, в состав которых входят висмут и кадмий. Они применяются там, где требуется пониженная температура пайки; механическая прочность их очень незначительна. Висмутовые припои обладают большой хрупкостью.
Наиболее распространенные твердые припои — медно-щшковые (ПМЦ) и серебряные (ПСр).
Обобщенные характеристики некоторых припоев приведены в табл. 7-8.
Не относящиеся к собственно припоям особые виды металлических материалов применяются в электровакуумной технике для вводов, вплавляемых в стекло и работающих при сравнительно низких температурах, так что использование здесь особо тугоплавких, но дорогих металлов (вольфрам, молибден, платина) не требуется. Для этих материалов особую важность имеет температурный коэффициент линейного расширения а;, который для получения вакуумплотного ввода должен согласовываться с ос; стекла. Отметим ковар (марка 29НК), применяемый для впая в твердые стекла; это сплав примерного состава: Ni 29%, Со 18 %, Fe остальное; его р равно 0,49 мкОм-м, а; составляет (4—5)-10~в К *.
Платинит представляет собой биметаллическую проволоку с сердечником из никелевой стали марки Н42 (с содержанием Ni 42—44 % по массе) и наружным слоем из меди марки МО (стр. 198). Содержание меди в платините — от 25 до 30 % общей массы проволоки. Название «платинит» объясняется тем, что а; платини-товой проволоки близок к а; платины (см. табл. 7-1).
ФЛЮСЫ
Это вспомогательные материалы для получения надежной пайки. Они должны:
1)растворять и удалять оксиды и загрязнения с поверхности спаиваемых металлов;
2) защищать в процессе пайки поверхность металла, а также расплавленный припой от окисления; 3) уменьшать поверхностное натяжение расплавленного припоя и смачиваемость им соединяемых поверхностей.
По действию, оказываемому на металл, подвергающийся пайке, флюсы делятся на_иесколъко групп.
"" Активные или кислотные флюсы. Они приготовляются на основе активных веществ: соляной кислоты, хлористых и фтористых соединений металлов и т. д. Эти флюсы интенсивно растворяют оксидные пленки на поверхности металла, благодаря чему обеспечивается хорошая адгезия, а следовательно, и высокая механическая прочность спая. Остаток флюса после пайки вызывает интенсивную коррозию спая и основного металла. Применяются эти флюсы только в том случае, когда возможна тщательная промывка и полное удаление остатков флюса.
При монтажной пайке электрорадиоприборов применение активных флюсов недопустимо.
Бескислотные флюсы. Так называют канифоль и флюсы, приготовляемые на ее основе с добавлением неактивных веществ (спирт, глицерин).
Активированные флюсы. Так называют флюсы, приготовляемые на основе канифоли с добавкой активаторов — небольших количеств солянокислого или фосфорнокислого анилина, салициловой кислоты, солянокислого диэтиламина и т. п. Высокая активность некоторых активированных флюсов позволяет производить пайку без предварительного удаления оксидов после обезжиривания.
8 Богородицкий Н. П. и др.
Антикоррозийные флюсы. Это флюсы на основе фосфорной кислоты с добавлением различных органических соединений и растворителей, а также флюсы на основе органических кислот. Остатки этих флюсов не вызывают коррозии.
НЕМЕТАЛЛИЧЕСКИЕ ПРОВОДНИКИ
Электроугольные изделия. Из числа твердых неметаллических проводниковых материалов наибольшее значение имеют материалы на основе углерода (электротехнические угольные изделия, вокращенно электроугольные изделия). Из угля изготовляют щетки электрических машин, электроды для прожекторов, электроды для дуговых электрических печей и электролитических ванн, аноды гальванических элементов. Угольные порошки используют в микрофонах для создания сопротивления, изменяющегося от звукового давления. Из угля делают высокоомные резисторы, разрядники для телефонных сетей; угольные изделия применяют в электровакуумной технике.
В качестве сырья для производства электроугольных изделий можно использовать сажу, графит или антрацит. Для получения стержневых электродов измельченная масса со связующим, в качестве которого используется каменноугольная смола, а иногда и жидкое стекло, продавливается сквозь мундштук. Изделия более сложной формы изготовляют в соответствующих пресс-формах. Угольные заготовки проходят процесс обжига. Режим обжига определяет форму, в которой углерод будет находиться в изделии. При высоких температурах достигается искусственный перевод углерода в форму графита, вследствие чего такой процесс носит название графитирования.
Обжиг обычных щеток для электрических машин ведут при температуре около 800 °С; графитированные щетки нагревают при обжиге до 2200 °С.
Угольные электроды (табл. 7-9), работа которых будет протекать при высоких температурах, обжигаются также при очень высокой температуре, вплоть до 3000 °С. Угольные электроды, как и другие угольные изделия, имеют отрицательный температурный коэффициент удельного сопротивления (рис. 7-28).
Щетки служат для образования скользящего контакта между неподвижной и вращающейся частями электрической машины, т. е. для подвода (или отвода) тока к коллектору или контактным кольцам.
Щетки выпускают различных размеров (прилегающая к коллектору контактная поверхность щетки — от 4 X 4 до 35 X 35 мм, высота щетки — от 12 до 70 мм). Имеется несколько марок щеток, отличающихся друг от друга составом и технологическим процессом изготовления Для различных марок характерны определенные значения удельного сопротивления, допустимой плотности тока, линейной скорости на коллекторе, коэффициента трения, твердости щетки.
Различают щетки угольно-графитные (УГ), графитные (Г), электрографитиро-ванные, т. е. подвергнутые термической электрообработке — графитированию (ЭГ), медно-графитные — с содержанием металлической меди (М и МГ).
Щетки с содержанием порошкового металла обладают особенно малым электрическим сопротивлением и дают незначительное контактное падение напряжения (между щеткой и коллектором).
Важнейшие характеристики щеток приведены в табл. 7-10.
Угольные порошки для микрофонов изготовляются из антрацита. Удельное сопротивление порошка зависит от крупности зерен, режима обжига порошка и плотности засыпки.
Микрофонные порошки выпускают двух типов: мелкозернистые, проходящие сквозь сито с 52 отверстиями на 1 см2, и крупнозернистые, проходящие сквозь сито с 45 отверстиями на 1 см2.
Обжиг порошков, увеличивающий их электрическое сопротивление, производят при температуре 600— 800 °С. Сопротивление порошков измеряют в кубике объемом 1 см*, куда порошоь засыпают из бюретки с высоты 1 см в течение 6—7 с. Значение р мелкозернистого порошка должно быть 0,4 Ом-м. Масса объема 1 см3, заполненного угольным порошком вышеуказанным методом, должна равняться 0,8—0,9 г.
Порошки не должны слеживаться с течением времени и слипаться при воздействии повышенной влажности.
Непроволочные резисторы, отличающиеся от проволочныл уменьшенными размерами и высоким верхним пределом номинального сопротивления, широко применяются в автоматике, измерительной и вычислительной технике и некоторых других областях электротехники. Они должны иметь малую зависимость сопротивления от напряжения и отличаться высокой стабильностью при воздействии температуры и влажности.
В качестве проводящих материалов непроволочных линейных резисторов могут быть использованы природный графит, сажа, пиролитический углерод, бороугле-родистые пленки, а также высокоомные сплавы металлов и другие материалы.
Природный графит представляет собой одну из модификаций чистого углерода слоистой структуры (рис. 7-29) с большой анизотропией как электрических, так и механических свойств. Основные свойства графита (а также пиро-литического углерода, см. ниже) приведены в табл. 7-11. Следует отметить, что чистый углерод в модификации алмаза представляет собой диэлектрик с весьма высоким удельным сопротивлением.
Сажи представляют собой мелкодисперсный углерод. Лаки, в состав которых в качестве пигмента введена сажа, обладают малым удельным сопротивлением и могут быть использованы для выравнивания электрического поля в электрических машинах высокого напряжения.
Особенностью структуры пиролитического углерода является отсутствие строгой периодичности в расположении слоев (в отличие от графита) при сохранении их параллельности.
Бороуглеродистые пленки получаются пиролизом борорганических соединений, например В(С4Н9)3 или В(С3Н7)3. Эти пленки обладают малым температурным коэффициентом удельного сопротивления.
Проводниковые материалы особо высокой нагревостойкости. В некоторых случаях [нагревательные элементы высокотемпературных электрических печей, электроды магнитогидродинамических (МГД-) генераторов ] требуются проводниковые материалы, которые могли бы достаточно надежно работать при температурах 1500— 2000 К и даже выше. В МГД-генераторах условия работы проводниковых материалов еще усложняются из-за соприкосновения материала g плазмой и возможности электролиза при прохождении через материал постоянного тока.
Проблема получения проводниковых материалов, полностью удовлетворяющих всем этим требованиям, окончательно еще не решена; по-видимому, решение может быть найдено исключительно в применении специальных керамических материалов. Среди высоконагревостойких проводящих материалов могут быть отмечены некоторыз оквиды (прежде всего керамика диоксида циркония ZrO2> стабилизированная добавкой оксида иттрия Y2O3), керамика диоксида церия СеО2, некоторые хромиты. На рис. 7-30 представлены температурные 8авиеимооти р таких материалов. Некоторые свойства керамики ZrO2 — Y2O;, (после обжига, при пористости 25 % по объему): средняя плотность 2,9 Мг/м3,
щ = 13-10 * К *, коэффициент теплопроводности (при 1500°С) разен 1,45Вт/(м-К). Стабилизируя диоксид циркония ZrOa добавлением оксида иттрия Y2O3 (или оксидов некоторых других металлов), можно избежать структурных превращений чистого ZrO2 во время охлаждения после обжига, связанных е уменьшением объема и вызываемых этим повреждением обожженных изделий.
Вопрос 35