Проводниковые материалы классификация и основные свойства проводниковых материалов
Классификация. В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы.
Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление р при нормальной температуре не более 0,05 мкОм-м, и сплавы высокого сопротивления, имеющие р при нормальной температуре не менее 0,3 мкОм-м. Металлы высокой проводимости используются для проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления применяются для изготовления резисторов, электронагревательных приборов, нитей ламп накаливания и т. п.
Особый интерес представляют собой обладающие чрезвычайно малым удельным сопротивлением при весьма низких (криогенных)
температурах материалы —сверхпроводники и криопроводники; они будут рассмотрены ниже.
К жидким проводникам относятся расплавленные металлы и различные электролиты. Для большинства металлов температура плавления высока (см. табл. 7-1, в которой приведены приблизительные значения важнейших физических параметров металлов, представляющих интерес для электротехники); только ртуть, имеющая температуру плавления около минус 39 °С, может быть использована в качестве жидкого металлического проводника при нормальной температуре. Другие металлы являются жидкими проводниками при повышенных температурах.
Механизм прохождения тока в металлах — как в твердом, так и в жидком состоянии — обусловлен движением (дрейфом) свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода. Проводниками второго рода, или электролитами, являются растворы (в частности, водные) кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов в соответствии с законами Фарадея, вследствие чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза. Ионные кристаллы в расплавленном состоянии также являются проводниками второго рода. Примером могут служить соляные закаленные ванны с электронагревом.
Все газы и пары, в том числе и пары металлов, при низких на-пряженностях электрического поля не являются проводниками. Однако, если напряженность поля превзойдет некоторое критическое значение, обеспечивающее начало ударной и фотоионизации, то газ может стать проводником с электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов числу положительных ионов в единице объема представляет собой особую проводящую среду, носящую название плазмы.
Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных (свободных) электронов. В свободное состояние от каждого атома металла переходит от одного до двух электронов. К электронному газу применялись представления и законы статистики обычных газов. При изучении хаотического (теплового) и направленного под действием силы электрического поля движения электронов был выведен закон Ома. При столкновениях электронов с узлами кристаллической решетки энергия, накопленная при ускорении электронов в электрическом поле, передается металлической основе проводника, вследствие чего он нагревается. Рассмотрение этого вопроса привело к выводу закона Джоуля—Ленца. Таким образом, электронная теория металлов дала возможность аналитически описать и объяснить найденные ранее экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах. Оказалось возможным также объяснить и связь между электропроводностью и теплопроводностью металлов [см. формулу (7-7)]. Кроме того, некоторые опыты подтвердили гипотезу об электронном газе в металлах, а именно:
1. При длительном пропускании электрического тока через цепь, состоящую из одних металлических проводников, не наблюдается проникновения атомов одного металла в другой.
2. При нагреве металлов до высоких температур скорость теплового движения свободных электронов увеличивается, и наиболее
быстрые из них могут вылетать из металла, преодолевая силы поверхностного потенциального барьера.
3. В момент неожиданной остановки быстро двигавшегося проводника происходит смещение электронного газа по закону инерции в направлении движения. Смещение электронов приводит к появлению разности потенциалов на концах заторможенного проводника, и стрелка подключаемого к ним измерительного прибора отклоняется по шкале.
4. Исследуя поведение металлических проводников в магнитном поле, установили, что вследствие искривления траектории электронов в металлической пластинке, помещенной в поперечное магнитное поле, появляется поперечная ЭДС и изменяется электрическое сопротивление проводника.
Однако выявились и противоречия некоторых выводов теории с опытными данными. Они состояли в расхождении температурной зависимости удельного сопротивления, наблюдаемой на опыте и вытекающей из положений теории; в несоответствии теоретически полученных значений теплоемкости металлов опытным данным. Наблюдаемая теплоемкость металлов меньше теоретической и такова, как будто электронный газ не поглощает теплоту при нагреве металлического проводника. Эти противоречия удалось преодолеть, рассматривая некоторые положения с позиций квантовой механики. В отличие от классической электронной теории в квантовой механике принимается, что электронный газ в металлах при обычных температурах находится в состоянии вырождения. В этом состоянии энергия электронного газа почти не зависит от температуры, как это показано на рис. 7-1, т. е. тепловое движение почти не изменяет энергию электронов. Поэтому на нагрев электронного газа теплота не затрачивается, что и обнаруживается при измерении теплоемкости металлов. В состояние, аналогичное обычным газам, электронный газ приходит при температуре порядка тысяч Кельвинов. Представляя металл как систему, в которой положительные ионы скрепляются посредством свободно движущихся электронов, легко понять природу всех основных свойств металлов: пластичности, ковкости, хорошей теплопроводности и высокой электропроводности.
Свойства проводников. К важнейшим параметрам, характеризующим свойства проводниковых материалов, относятся: 1) удельная проводимость у или обратная ей величина — удельное сопротивление р, 2) температурный коэффициент удельного сопротивления ТКр или сср, 3) коэффициент теплопроводности yt> 4) контактная разность потенциалов и термоэлектродвижущая сила (термо-ЭДС), 5) работа выхода электронов из металла, 6) предел прочности при растяжении стр и относительное удлинение перед разрывом ts.Ul.
Удельное сопротивление измеряется в ом-метрах. Для измерения р проводниковых материалов разрешается пользоваться внесистемной единицей Оммм2/м; очевидно, что проволока из материала длиной 1 м с поперечным сечением 1 мм2 имеет сопротивление в омах, численно равно р материала в Ом-мм2/м.
Для различных металлов скорости хаотического теплового движения электронов vT (при определенной температуре) примерно одинаковы. Незначительно различаются также и концентрации свободных электронов п0 (например, для меди и никеля это различие меньше 10 %). Поэтому значение удельной проводимости у (или удельного сопротивления р) в основном зависит от средней длины свободного пробега электронов в данном проводнике К, которая, в свою очередь, определяется структурой проводникового материала. Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления; примеси, искажая решетку, приводят к увеличению р. К такому же выводу можно прийти, исходя из волновой природы электронов. Рассеяние электронных волн происходит на дефектах кристаллической решетки, которые соизмеримы с расстоянием около четверти
Температурный коэффициент удельного сопротивления металлов. Число носителей заряда (концентрация свободных электронов) в металлическом проводнике при повышении температуры практически остается неизменным. Однако вследствие усилений колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т. е. уменьшается средняя длина свободного пробега электрона К, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 7-2). Иными словами, температурный коэффициент (см. стр. 39) удельного сопротивления металлов (кельвин в минус первой степени)
положителен. Согласно выводам электронной теории металлов значения Кр чистых металлов в твердом состоянии должны быть близки к температурному коэффициенту расширения идеальных газов, т. е. 1/273 ж 0,0037 К"1 (см. табл. 7-1; повышенными значениями <хр обладают некоторые металлы, в том числе ферромагнитные металлы — железо, никель и кобальт). При изменении температуры в узких диапазонах на практике допустима кусочно-линейная аппроксимация зависимости р (Т); в этом случае принимают, что
где pj и р2 — удельные сопротивления проводникового материала при температурах Т1 и Т2 соответственно (при этом Тг > 7\); ар — так называемый средний температурный коэффициент удельного сопротивления данного материала в диапазоне температур от Ti до 7V
Изменение удельного сопротивления металлов при плавлении. При переходе из твердого состояния в жидкое у большинства металлов наблюдается увеличение удельного сопротивления р, как это видно, например для меди, из рис. 7-2; однако у некоторых металлов р при плавлении уменьшается.
Удельное сопротивление увеличивается при плавлении у тех металлов, у которых при плавлении увеличивается объем, т. е. уменьшается плотность; и, наоборот, у металлов, уменьшающих свой объем при плавлении, —галлия, висмута, сурьмы (аналогичным фазовому переходу лед—вода) р уменьшается
Если же сплав двух металлов создает раздельную кристаллизацию и структура застывшего сплава представляет собой смесь кристаллов каждого из компонентов (т. е. если эти металлы не образуют
твердого раствора и искажение кристаллической решетки каждого компонента не наблюдается), то удельная проводимость у сплава меняется с изменением состава приблизительно линейно, т. е. определяется арифметическим правилом смещения (рис. 7-5).
Теплопроводность металлов. За передачу теплоты через металл в основном ответственны те же свободные электроны, которые определяют и электропроводность металлов и число которых в единице объема металла весьма велико. Поэтому, как правило, коэффициент теплопроводности ут металлов намного больше, чем коэффициент теплопроводности диэлектриков (см. табл. 5-1). Очевидно, что щи прочих равных условиях, чем больше удельная электрическая проводимость y металла, тем больше должен быть и его коэффициент теплопроводности. Легко также видеть, что при повышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость у уменьшаются, отношение коэффициента
Термоэлектродвижущая сила. При соприкосновении двух различных металлических проводников (или полупроводников, см. гл. 8) между ними возникает контактная разность потенциалов. Причина появления этой разности потенциалов заключается в различии значений работы выхода электронов из различных металлов (см. табл. 7-1), а также в том, что концентрация электронов, а следовательно, и давление электронного газа у разных металлов и сплавов могут быть неодинаковыми. Из электронной теории металлов следует, что контактная разность потенциалов между металлами А и В равна
Фактически соотношение (7-11) соблюдается не всегда и зависимость термо-ЭДС от разности температур спаев может быть не строго линейной (см. кривую 7 на рис. 7-27). Провод, составленный из двух изолированных друг от друга проволок из различных металлов или сплавов {термопара), применяют для измерения температур. В термопарах используются проводники, имеющие большой и стабильный
коэффициент термо-ЭДС. Наоборот, для обмоток измерительных приборов и резисторов стремятся применять проводниковые материалы и сплавы с возможно меньшим коэффициентом термо-ЭДС относительно меди, чтобы избежать появления в измерительных схемах паразитных термо-ЭДС, которые могли бы вызвать ошибки при точных измерениях.
Температурный коэффициент линейного расширения проводников. Этот коэффициент, вычисляемый по тому же выражению (5-7), что и для диэлектриков, интересен не только при рассмотрении работы различных сопряженных материалов в той или иной конструкции (возможность растрескивания или нарушения вакуум-плотного соединения со стеклами, керамикой при изменении температуры и т. п.). Он необходим также и для расчета температурного коэффициента электрического сопротивления провода
Правда, для чистых металлов, как это видно из табл. 7-1, обычно а/ "С «р> так что в формуле (7-12) можно пренебречь аг по сравнению с ар и считать приближенно aR » ap. Однако для сплавов, имеющих малый ар (см. рис. 7-3, б и § 7-5), формула (7-12) может иметь существенное практическое значение. Значение а, металлов возрастает при повышении температуры и приближении к температуре плавления (рис. 7-9). Поэтому, как правило, при нормальной температуре легкоплавкие металлы имеют сравнительно высокие, а тугоплавкие —сравнительно низкие значения аг (см, табл. 7-1). Механические свойства проводников характеризуют пределом прочности при растяжении стр и относительным удлинением перед разрывом А///, а также хрупкостью, твердостью и тому подобными свойствами. Механические свойства металлических проводников в большой степени зависят от механической и термической обработки, от наличия легирующих примесей и т. п. Влияние отжига приводит к существенному уменьшению стр и увеличению Al/l. Такие физические параметры проводниковых материалов, как температура плавления и кипения, удельная теплоемкость (см. табл. 7-1) и другие, не требуют особых пояснений
Вопрос 30