Команды логических операций: AND, OR, XOR, TEST, NOT

Логические операции являются важным элементом в проектировании микросхем и имеют много общего в логике программирования. Команды AND, OR, XOR и TEST — являются командами логических операций. Эти команды используются для сброса и установки бит и для арифметических операций в коде ASCII. Все эти команды обрабатывают один байт или одно слово в регистре или в памяти, и устанавливают флаги CF, OF, PF, SF, ZF.

AND

В случае, если оба из сравниваемых битов равны 1, то результат равен 1; во всех остальных случаях результат — 0.

OR

В случае, если хотя бы один из сравниваемых битов равен 1, то результат равен 1; если сравниваемые биты равны 0, то результат — 0.

XOR

В случае, если один из сравниваемых битов равен 0, а другой равен 1, то результат равен 1; если сравниваемые биты одинаковы (оба — 0 или оба — 1) то результат — 0.

TEST

Действует как AND — устанавливает флаги, но не изменяет биты.

Первый операнд в логических командах указывает на один байт или слово в регистре или в памяти и является единственным значением, которое может изменятся после выполнения команд. В следующих командах AND, OR и XOR используются одинаковые битовые значения:

AND OR XOR 0101 0101 0101 0011 0011 0011

Результат:

0001 0111 0110

Для следующих несвязанных примеров, предположим, что AL содержит 1100 0101, а BH содержит 0101 1100:

1. AND AL,BH ;Устанавливает в AL 0100 0100

2. OR BH,AL ;Устанавливает в BH 1101 1101

3. XOR AL,AL ;Устанавливает в AL 0000 0000

4. AND AL,00 ;Устанавливает в AL 0000 0000

5. AND AL,0FH ;Устанавливает в AL 0000 0101

6. OR CL,CL ;Устанавливает флаги SF и ZF

Примеры 3 и 4 демонстрируют способ очистки регистра. В примере 5 обнуляются левые четыре бита регистра AL. Хотя команды сравнения CMP могут быть понятнее, можно применить команду OR для следующих целей:

1. OR CX,CX ;Проверка CX на нуль JZ ... ;Переход, если нуль

2. OR CX,CX ;Проверка знака в CX JS ... ;Переход, если отрицательно

Команда TEST действует аналогично команде AND, но устанавливает только флаги, а операнд не изменяется. Ниже приведено несколько примеров:

1. TEST BL,11110000B ;Любой из левых бит в BL JNZ ... ; равен единице?

2. TEST AL,00000001B ;Регистр AL содержит JNZ ... ; нечетное значение?

3. TEST DX,OFFH ;Регистр DX содержит JZ ... ; нулевое значение?

Еще одна логическая команда NOT устанавливает обpатное значение бит в байте или в слове, в регистре или в памяти: нули становятся единицами, а единицы — нулями. В случае, если, например, pегистр AL содержит 1100 0101, то команда NOT AL изменяет это значение на 0011 1010. Флаги не меняются.

Команда NOT не эквивалентна команде NEG, которая меняет значение с положительного на отрицательное и наоборот, посредством замены бит на противоположное значение и прибавления единицы.

Изменение строчных букв на заглавные

Существуют различные причины для преобразований между строчными и заглавными буквами. Например, вы могли получить файл данных, созданный на компьютере, который работает только с заглавными буквами. Или некая программа должна позволить пользователям вводить команды как заглавными, так и строчными буквами (например, YES или yes) и преобразовать их в заглавные для проверки. Заглавные буквы от A до Z имеют шест. коды от 41 до 5A, а строчные буквы от a до z имеют шест. коды от 61 до 7A.

Единственная pазница в том, что пятый бит равен 0 для заглавных букв и 1 для строчных:

Буква A: 01000001

Буква a: 01100001

Буква Z: 01011010

Буква z: 01111010

Команды сдвига и циклического сдвига

Команды сдвига и циклического сдвига, которые представляют собой часть логических возможностей компьютера, имеют следующие свойства:

uобрабатывают байт или слово;

uимеют доступ к регистру или к памяти;

uсдвигают влево или вправо;

uсдвигают на величину до 8 бит (для байта) и 16 бит (для слова)

uсдвигают логически (без знака) или арифметически (со знаком).

Значение сдвига на 1 может быть закодировано как непосредcтвенный операнд, значение больше 1 должно находиться в регистре CL.

Команды сдвига

При выполнении команд сдвига флаг CF всегда содержит значение последнего выдвинутого бита.

Существуют следующие команды cдвига:

SHR ;Логический (беззнаковый) сдвиг вправо

SHL ;Логический (беззнаковый) сдвиг влево

SAR ;Арифметический сдвиг вправо

SAL ;Арифметический сдвиг влево

Следующий фрагмент иллюстрирует выполнение команды SHR:

MOV CL,03 ; AX:

MOV AX,10110111B ; 10110111

SHR AX,1 ; 01011011 ;Сдвиг вправо на 1

SHR AX,CL ; 00001011 ;Сдвиг вправо на 3

Первая команда SHR сдвигает содержимое регистра AX вправо на 1 бит.

Выдвинутый в результате один бит попадает в флаг CF, а самый левый бит регистра AX заполняется нулем. Вторая команда cдвигает содержимое регистра AX еще на три бита. При этом флаг CF последовательно принимает значения 1, 1, 0, а в три левых бита в регистре AX заносятся нули.

Рассмотрим действие команд арифметического вправо SAR:

MOV CL,03 ; AX:

MOV AX,10110111B ; 10110111

SAR AX,1 ; 11011011 ;Сдвиг вправо на 1

SAR AX,CL ; 11111011 ;Сдвиг вправо на 3

Команда SAR имеет важное отличие от команды SHR: для заполнения левого бита используется знаковый бит. Таким образом, положительные и отрицательные величины сохраняют свой знак. В приведенном примере знаковый бит содержит единицу.

При сдвигах влево правые биты заполняются нулями. Таким обpазом, результат команд сдвига SHL и SAL индентичен.

Сдвиг влево часто используется для удваивания чисел, а сдвиг вправо — для деления на 2. Эти операции осуществляются значительно быстрее, чем команды умножения или деления. Деление пополам нечетных чисел (например, 5 или 7) образует меньшие значения (2 или 3, соответственно) и устанавливает флаг CF в 1. Кроме того, если необходимо выполнить сдвиг на 2 бита, то использование двух команд сдвига более эффективно, чем использование одной команды с загрузкой регистра CL значением 2.

Для проверки бита, занесенного в флаг CF используется команда JC (переход, если есть перенос).

Команды циклического сдвига

Циклический сдвиг представляет собой операцию сдвига, при которой выдвинутый бит занимает освободившийся разряд. Существуют следующие команды циклического сдвига:

ROR ;Циклический сдвиг вправо

ROL ;Циклический сдвиг влево

RCR ;Циклический сдвиг вправо с переносом

RCL ;Циклический сдвиг влево с переносом

Следующая последовательность команд иллюстрирует операцию циклического сдвига ROR:

MOV CL,03 ; BX:

MOV BX,10110111B ; 10110111

ROR BX,1 ; 11011011 ;Сдвиг вправо на 1

ROR BX,CL ; 01111011 ;Сдвиг вправо на 3

Первая команда ROR при выполнении циклического сдвига переносит правый единичный бит регистра BX в освободившуюся левую позицию. Вторая команда ROR переносит таким образом три правых бита.

В командах RCR и RCL в сдвиге участвует флаг CF. Выдвигаемый из регистра бит заносится в флаг CF, а значение CF при этом поступает в освободившуюся позицию.

Рассмотрим пример, в котором используются команды циклического и простого сдвига. Предположим, что 32-битовое значение находится в регистрах DX:AX так, что левые 16 бит лежат в регистре DX, а правые — в AX. Для умножения на 2 этого значения возможны cледующие две команды:

SHL AX,1 ;Умножение пары регистров

RCL DX,1 ; DX:AX на 2

Здесь команда SHL сдвигает все биты регистра AX влево, причем самый левый бит попадает в флаг CF. Затем команда RCL сдвигает все биты регистра DX влево и в освободившийся правый бит заносит значение из флага CF.

Организация программ

Ниже даны основные рекомендации для написания ассемблерных программ:

1. Четко представляйте себе задачу, которую должна решить программа.

2. Сделайте эскиз задачи в общих чертах и спланируйте общую логику программы.

Например, если необходимо проверить операции пеpесылки нескольких байт, начните c определения полей с пересылаемыми данными.

Затем спланируйте общую стратегию для инициализации, условного перехода и команды LOOP.

Приведем основную логику, которую используют многие программисты в таком случае:

инициализация стека и сегментных регистров

вызов подпрограммы цикла

возврат

Подпрограмма цикла может быть спланирована следующим образом:

инициализация регистров значениями адресов и числа циклов

Метка: пересылка одного байта увеличение адресов на 1 уменьшение счетчика на 1: если счетчик не ноль, то идти на метку если ноль, возврат

3. Представьте программу в виде логических блоков, следующих друг за другом. Процедуры не превышающие 25 строк (размер экрана) удобнее для отладки.

4. Пользуйтесь тестовыми примерами программ. Попытки запомнить все технические детали и программирование сложных программ «из головы» часто приводят к многочисленным ошибкам.

5. Используйте комментарии для описания того, что должна делать процедура, какие арифметические действия или операции сравнения будут выполняться и что делают редко используемые команды. (Например, команда XLAT, не имеющая операндов).

6. Для кодирования программы используйте заготовку программы, скопированной в файл с новым именем.

Важно:

uМетки процедур должны завершаться двоеточием для указания типа NEAR. Отсутствие двоеточия приводит к ассемблерной ошибке.

uМетки для команд условного перехода и LOOP должны лежать в границах -128 до +127 байт. Операнд таких команд генерирует один байт объектного кода. Шест. от 01 до 7F соответствует десятичным значениям от +1 до +127, а шест. от FF до 80 покрывает значения от -1 до +128. Так как длина машинной команды может быть от 1 до 4 байт, то соблюдать границы не просто. Практически можно ориентироваться на размер в два экрана исходного текста (примерно 50 строк).

uПри использовании команды LOOP, инициализируйте регистр CX положительным числом. Команда LOOP контролирует только нулевое значение, при отрицательном программа будет продолжать циклиться.

uВ случае, если некоторая команда устанавливает флаг, то данный флаг сохраняет это значение, пока другая команда его не изменит. Например, если за арифметической командой, которая устанавливает флаги, следуют команды MOV, то они не изменят флаги. Однако, для минимизации числа возможных ошибок, cледует кодировать команды условного перехода непосредственно после команд, устанавливающих проверяемые флаги.

uВыбирайте команды условного перехода соответственно операциям над знаковыми или беззнаковыми данными.

uДля вызова процедуры используйте команду CALL, а для возврата из процедуры — команду RET. Вызываемая процедура может, в свою очередь, вызвать другую процедуру, и если следовать существующим соглашениям, то команда RET всегда будет выбирать из стека правильный адрес возврата.

uБудьте внимательны при использовании индексных операндов. Сравните:
MOV AX,SI
MOV AX,[SI]
Первая команда MOV пересылает в регистр AX содержимое регистра SI. Вторая команда MOV для доступа к пересылаемому слову в памяти использует относительный адрес в регистре SI.

uИспользуйте команды сдвига для удваивания значений и для деления пополам, но при этом внимательно выбирайте соответствующие команды для знаковых и беззнаковых данных.

Лекция 12.
Компоновка программ

Межсегментные вызовы

Примеры программ, рассматриваемых ранее, состояли из одного шага ассемблирования. Возможно, однако, выполнение программного модуля, состоящего из нескольких ассемблированных программ. В этом случае программу можно рассматривать, как состоящую из основной программы и одной или более подпрограмм. Причины такой организации программ состоят в следующем:

uбывает необходимо скомпоновать программы, написанные на разных языках, например, для объединения мощности языка высокого уровня и эффективности Ассемблера;

uпрограмма, написанная в виде одного модуля, может оказаться слишком большой для ассемблирования;

uотдельные части программы могут быть написаны разными группами программистов, ассемблирующих свои модули раздельно;

uввиду возможно большого размера выполняемого модуля, может появиться необходимость перекрытия частей программы в процессе выполнения.

Каждая программа ассемблируется отдельно и генерирует собственный уникальный объектный (OBJ) модуль. Программа компоновщик (LINK) затем компонует объектные модули в один объединенный выполняемый (EXE) модуль.

Обычно выполнение начинается с основной программы, которая вызывает одну или более подпрограмм. Подпрограммы, в свою очередь, могут вызывать другие подпрограммы.

Существует много разновидностей организации подпрограмм, но любая организация должна быть «понятна» и Ассемблеру, и компоновщику, и этапу выполнения. Следует быть внимательным к ситуациям, когда, например, подпрограмма 1 вызывает подпрограмму 2, которая вызывает подпрограмму 3 и, которая в свою очередь вызывает подпрограмму 1. Такой процесс, известный как рекурсия, может использоваться на практике, но при неаккуратном обращении может вызвать любопытные ошибки при выполнении.

Команды CALL используются для внутрисегментных вызовов, то есть, для вызовов внутри одного сегмента. Внутрисегментный CALL может быть короткий (в пределах от +127 до -128 байт) или длинный (превышающий указанные границы). В результате такой операции «старое» значение в регистре IP запоминается в стеке, а «новый» адрес перехода загружается в этот регистр.

Например, внутрисегментный CALL может иметь следующий объектный код: E82000. Шест.E8 представляет собой код операции, которая заносит 2000 в виде относительного адреса 0020 в регистр IP. Затем процессор объединяет текущий адрес в регистре CS и относительный адрес в регистре IP для получения адреса следующей выполняемой команды. При возврате из процедуры команда RET восстанавливает из стека старое значение в регистре IP и передает управление таким образом на следующую после CALL команду.

Вызов в другой кодовый сегмент представляет собой межсегментный (длинный) вызов. Данная операция сначала записывает в стек содержимое регистра CS и заносит в этот регистр адрес другого сегмента, затем записывает в стек значение регистра IP и заносит новый относительный адрес в этот регистр.

Таким образом в стеке запоминаются и адрес кодового сегмента и смещение для последующего возврата из подпрограммы.

Например, межсегментный CALL может состоять из следующего объектного кода:

9A 0002 AF04

Шест.9A представляет собой код команды межсегментного вызова которая записывает значение 0002 в виде 0200 в регистр IP, а значение AF04 в виде 04AF в регистр CS. Комбинация этих адресов указывает на первую выполняемую команду в вызываемой подпрограмме:

Кодовый сегмент 04AF0

Смещение в IP 0200

Действительный адрес 04CF0

При выходе из вызванной процедуры межсегментная команда возврата REP восстанавливает оба адреса в регистрах CS и IP и таким образом передает управление на следующую после CALL команду.

Атрибуты EXTRN и PUBLIC

Директива EXTRN

Директива EXTRN имеет следующий формат:

EXTRN имя:тип [, ... ]

Можно определить более одного имени (до конца строки) или закодировать дополнительные директивы EXTRN.

В другом ассемблерном модуле соответствующее имя должно быть определено и идентифицировано как PUBLIC.

Тип элемента может быть ABS, BYTE, DWORD, FAR, NEAR, WORD. Имя может быть определено через EQU и должно удовлетворять реальному определению имени.

Директива PUBLIC

Директива PUBLIC указывает Ассемблеру и компоновщику, что адрес указанного идентификатора доступен из других программ. Директива имеет следующий формат:

PUBLIC идентификатор [, ... ]

Можно определить более одного идентификатора (до конца строки) или закодировать дополнительные директивы PUBLIC. Идентификаторы могут быть метками (включая PROC-метки), переменными или числами.

Неправильными идентификаторами являются имена регистров и EQU-идентификаторы, определяющие значения более двух байт.

Наши рекомендации