Сравнение прямотока с противотоком

Преимущества одной схемы течения теплоносителей перед другой определяются из сравнения количества теплоты, передаваемой при равных условиях, и коэффициентов теплопередачи.

Во всех случаях при прямотоке передается меньшее количество теплоты, т.е. противоток более экономичен по сравнению с прямотоком.

Экспериментальная установка

Установка (рис. 5.2) представляет собой поверхностный теплообменник 1, выполненный из двух труб, размещенных одна внутри другой. По внутренней трубе протекает горячая вода (греющий теплоноситель), по наружной – холодная (нагреваемый теплоноситель).

Сравнение прямотока с противотоком - student2.ru

Рис. 5.2. Схема экспериментальной установки

Для определения температур горячей воды на входе и выходе из теплообменника установлены термопары 2, 3; холодной воды – термометры 4 и 5. Холодные спаи термопар должны быть помещены в сосуд Дьюара 6, температура которого измеряется ртутным термометром. ЭДС термопар регистрируется цифровым вольтметром 7, подключенным через переключатель термопар 8.

Расход горячего теплоносителя, протекающего через теплообменник, измеряется с помощью ротаметра 9. Регулирование расхода теплоносителей осуществляется вентилями 10 и 11. Переключение схемы с прямоточной на противоточную производится с помощью вентиля 12.

Порядок выполнения работы

Установка включается по прямоточной схеме, для чего вентиль 12 ставится в положение “прямоток”. Открываются вентили 10 и 11 и в теплообменник при предельных расходах подается горячая и холодная вода. При достижении стационарного теплового режима, о наступлении которого судят по установившимся показаниям цифрового вольтметра 7, приступают к измерению температур и расходов теплоносителей. С этой целью через равные промежутки времени (3-5 минут) снимаются показания цифрового вольтметра, термопар и ротаметров. Затем вентиль 12 ставится в положение “противоток” и опыт повторяется в той же последовательности, что и при прямотоке.

Результаты измерений вносятся в табл. 5.1.

Т а б л и ц а 5.1

Схема подключения № пп Тгорвх, мВ Тгорвых, мВ Тх.с,, °С Тгорвх, °С Тгорвых, °С Тхолвх, °С Тхолвых, °С Н , мм Gгор , кг/с
Прямоток                  
                 
                 
Сред. знач.                    
Противоток                  
                 
                 
Сред. знач.                    


Обработка экспериментальных данных

Определяются средние значения параметров для каждого режима (прямотока и противотока). Температура горячего теплоносителя определяется по градуировочной таблице плюс температура холодных спаев термопар (поправка на холодный спай). Расход горячего теплоносителя по тарировочной кривой определяется по показаниям ротаметра.

Количество теплоты, переданной от одного теплоносителя к другому, определяется из выражения (5.2). Средние температуры теплоносителей определяются по формуле (5.5) и по формуле (5.4) определяется коэффициент теплопередачи k при различных схемах движения теплоносителя. Эффективность аппарата находится по формуле (5.6).

В ы в о д ы

Полученные экспериментальным путем численные значения коэффициентов теплопередачи необходимо сравнить для прямоточной и противоточной схем, пояснить преимущество противоточной схемы по сравнению с прямоточной. Сделать вывод о целесообразности применения того или иного теплообменника.

Л а б о р а т о р н а я р а б о т а № 6

ТЕПЛОВЫЕ ТРУБЫ

(сравнительное исследование тепловой трубы)

Цель работы:определение и сравнение коэффициентов эффективной теплопроводности тепловой трубы и медного стержня.

Задачи работы:

n изучение механизмов переноса тепловой энергии;

n изучение принципа действия и конструкции тепловых труб;

n экспериментальное определение коэффициента теплопроводности тепловой трубы и сравнение его с коэффициентом теплопроводности медного стержня;

n изучение основных способов практического применения тепловых труб.

Общие положения

Теплопередача или теплообмен – учение о самопроизвольных, необратимых процессах распространения теплоты в пространстве. Под процессом распространения теплоты понимается обмен внутренней энергией между отдельными элементами и между областями рассматриваемой среды. Перенос теплоты осуществляется тремя основными способами: теплопроводностью, конвекцией и тепловым излучением.

Теплопроводность представляет собой молекулярный перенос теплоты в телах (или между ними), обусловленный переменностью температуры в рассматриваемом пространстве.

Явление теплопроводности представляет собой процесс распространения энергии при непосредственном соприкосновении отдельных частиц тела или отдельных тел, имеющих разные температуры. Теплопроводность обусловлена движением микрочастиц вещества. В газах перенос энергии осуществляется путем диффузии молекул и атомов, а в жидкостях и твердых телах-диэлектриках – путем упругих волн. В металлах перенос энергии в основном осуществляется путем диффузии свободных электронов, а роль упругих колебаний кристаллической решетки здесь второстепенна.

Конвекция – процесс переноса теплоты при перемещении объемов жидкости или газа (текучей среды) в пространстве из области с одной температурой в область с другой температурой. При этом перенос теплоты неразрывно связан с переносом самой среды.

Тепловое излучение - процесс распространения теплоты с помощью электромагнитных волн, обусловленный только температурой и оптическими свойствами излучающего тела, при этом внутренняя энергия тела (среды) переходит в энергию излучения. Процесс превращения внутренней энергии вещества в энергию излучения, переноса излучения и его поглощения веществом называется теплообменом излучения. В природе и технике элементарные процессы распространения теплоты: теплопроводность, конвекция и тепловое излучение - часто происходят совместно.

Теплопроводность в чистом виде большей частью имеет место лишь в твердых телах.

Конвекция теплоты всегда сопровождается теплопроводностью. Совместный процесс переноса теплоты конвекцией и теплопроводностью называется конвективным теплообменом.

Коэффициент теплопроводности l численно равен количеству теплоты (Q), передаваемой механизмом теплопроводности через единицу площади (F) в единицу времени (Dt) при градиенте температуры, равном единице:

l= Сравнение прямотока с противотоком - student2.ru .   ( 6.1 )

Градиент температуры – вектор, направленный по нормали к изотермической поверхности (поверхности с одинаковыми температурами) в сторону возрастания температуры, и численно равный производной от температуры по этому направлению:

grad t = Сравнение прямотока с противотоком - student2.ru ,   ( 6.2 )
где Сравнение прямотока с противотоком - student2.ru - единичный вектор, нормальный к изотермической поверхности и направленный в сторону возрастания температуры; Сравнение прямотока с противотоком - student2.ru - производная от температуры по нормали n. Сравнение прямотока с противотоком - student2.ru

Сравнение прямотока с противотоком - student2.ru

Рис. 6.1. Направление вектора градиента температур

В соответствии со своим определением коэффициент теплопроводности имеет размерность Дж×м/м2с×К=Вт/м×К.

Коэффициент теплопроводности является одной из важнейших тепло-физических характеристик вещества и наибольшие значения имеет у металлов, а среди них у серебра, меди, золота, алюминия. В связи с этим одним из самых распространенных конструкционных материалов в теплоэнергетических устройствах является медь.

Из формулы (6.1) видно, что чем больше коэффициенты тепло-проводности, тем меньшие перепады температуры требуются для передачи одного и того же количества теплоты. Или, другими словами, чем больше эти коэффициенты, тем большее количество теплоты передается при всех прочих равных условиях, то есть теплопередающее устройство работает более эффективно.

Эффективное решение проблем теплообмена в значительной мере обеспечивает и общую эффективность теплоэнергетических систем и установок. Одним из таких решений часто является использование оригинальных теплопередающих устройств, называемых тепловыми трубами.

Впервые идея тепловой трубы была предложена американским инженером Гоглером в 1942 году. Но только в начале 60-х годов, после того как другой американский ученый Гровер независимо от Гоглера вновь изобрел и в 1963 году запатентовал ее, тепловые трубы получили интенсивное развитие. К настоящему времени созданы тысячи модификаций тепловых труб с различными функциями и для многообразных применений.

Тепловая труба представляет собой устройство, обладающее очень высокой теплопередающей способностью. Если характеризовать ее эквивалентным коэффициентом теплопроводности, то он оказывается в сотни раз больше, чем у меди. Конструктивно тепловая труба представляет собой герметичный сосуд (чаще всего цилиндрическую трубу), заполненный жидкостью-теплоносителем. Высокая теплопередающая способность ее достигается за счет того, что в тепловой трубе осуществляется конвективный перенос тепла, сопровождаемый фазовыми переходами (испарением и конденсацией) жидкости-теплоносителя. При подводе теплоты к одному концу тепловой трубы жидкость нагревается, закипает и превращается в пар (испаряется). При этом она поглощает большое количество теплоты (теплота преобразования), которое переносится паром к другому более холодному концу трубы, где пар конденсируется и отдает поглощенную теплоту. Далее сконденсированная жидкость опять возвращается в зону испарения. Этот возврат может осуществляться разными способами. Самый простой из них заключается в использовании силы тяжести. При вертикальном расположении тепловой трубы, когда зона конденсации находится выше зоны испарения, жидкость стекает вниз непосредственно под действием силы тяжести. Такой вариант тепловой трубы называется термосифоном. Естественно, эффективность работы термосифона зависит от его ориентации относительно направления силы тяжести. Для исключения этого недостатка в наиболее распространенных типах тепловых труб для возврата жидкости в зону испарения используются капиллярные эффекты. Для этого на внутренней поверхности тепловой трубы располагают слой капиллярно-пористой структуры (фитиль), по которому под действием капиллярных сил и происходит обратное движение жидкости.

Принципиальная схема тепловой трубы с фитилем изображена на рис. 6.2.

Сравнение прямотока с противотоком - student2.ru

Рис. 6.2. Принципиальная схема тепловой трубы:

1 - корпус, 2 - капиллярно-пористый слой (фитиль);

Þ - направление движения пара (направление переноса теплоты);

- направление движения жидкости (конденсата)

Основными преимуществами таких тепловых труб являются: высокая эффективность теплообмена, автономность работы, малый вес и габариты, высокая надежность, возможность реализации сложных теплопередающих функций, высокая изотермичность поверхности трубы.

Тепловая труба может иметь различные формы и габариты. Внутренний диаметр труб составляет от нескольких миллиметров до десятка сантиметров, длина - до нескольких метров. Для изготовления корпусов и капиллярных структур (фитилей) используются стекло, керамика, различные металлы и сплавы. В качестве жидкости-теплоносителя используются как легко испаряемые жидкости (ацетон, аммиак, фреоны) для низкотемпературных труб, так и вода, ртуть, индий, цезий, калий, натрий, литий, свинец, серебро, висмут и неорганические соли для труб, работающих при высоких температурах.

Наиболее характерными областями применения тепловых труб являются энергетика, машиностроение, электроника, химическая промышленность, сельское хозяйство. Широкое применение находят тепловые трубы при обеспечении тепловых режимов космических аппаратов, для охлаждения электронных приборов и систем, для создания регенеративных теплообменников.

Экспериментальная установка

Основными элементами лабораторной установки (рис. 6.3) являются укрепленные на штативах 1 тепловая труба 5 и медный стержень 6 одинаковой длины l и диаметра d. На нижних концах трубы и стержня установлены электрические нагреватели 2 одинаковой мощности, на которые подается электрическое напряжение от блока питания 9. Выделяемая на нагревателях тепловая мощность W измеряется вольтметром (U) и амперметром (I) 8, и находится W = I × U. Верхние концы тепловой трубы и стержня находятся в холодильнике 11 и охлаждаются проточной водопроводной водой. По длине трубы и стержня установлены по три термопары 4 (две по концам и одна в центре), определяющие температуры в соответствующих точках. Показания термопар через коммутационные устройства 7 регистрируются измерителем малых ЭДС - самопишущим потенциометром КСП-4 и выводятся на печать.

Сравнение прямотока с противотоком - student2.ru

Сравнение прямотока с противотоком - student2.ru

Рис. 6.3. Схема лабораторной установки:

а) -тепловая труба; б)- медный стержень;

1 - стойка (штатив); 2 - электрический нагреватель; 3 - теплоизоляция;

4 - датчики температуры (термопары); 5 - тепловая труба; 6 - медный стержень; 7 - коммутатор; 8 - вольтметр и амперметр; 9 - блок питания; 10 - измеритель малых ЭДС (самопишуший потенциометр КСП-4); 11 - холодильник

Порядок выполнения работы

1. Открыть кран системы охлаждения тепловой трубы и медного стержня.

2. Включить блок питания электрических нагревателей тепловой трубы и медного стержня и зафиксировать показания вольтметра и амперметра. Определив общую мощность W и разделив ее пополам, получить мощность каждого из нагревателей тепловой трубы и медного стержня и занести эти данные в табл. 6.1.

3. Включить питание потенциометра КСП-4.

Поочередно опрашивая все шесть термопар, установленных в тепловой трубе и медном стержне, потенциометр начнет печатать на бумажной ленте соответствующие значения температур через определенные промежутки времени. Показания каждой термопары пропечатываются цифрами, соответствующими номеру термопары. По мере прогрева тепловой трубы и медного стержня будет наблюдаться рост температуры в каждой точке с постепенным выходом на постоянное значение (стационарный режим). Стационарным можно считать такой режим, при котором показания каждой из термопар в соседних по времени точках будут отличаться менее чем на 10 %.

Обратить внимание на то, что выход тепловой трубы на стационарный режим осуществляется гораздо быстрее, чем медного стержня.

Через каждые 2 минуты (до выхода на стационарный режим) снимать показания потенциометра и заносить их в табл. 6.1.

Т а б л и ц а 6.1

  Медный стержень Тепловая труба
Мощность нагревателя, Вт WC = Сравнение прямотока с противотоком - student2.ru WTT = Сравнение прямотока с противотоком - student2.ru
Номера термопар
Время, мин. Показания термопар, °С
           
           
           
           
l, Вт/(м×К)            

Наши рекомендации