Гашение дуги в масляных выключателях.
В масляных выключателях контакты размыкаются в масле, однако вследствие высокой температуры дуги, образующейся между контактами, масло разлагается и дуговой разряд происходит в газовой среде. Приблизительно половину этого газа (по объему) составляют пары масла. Остальная часть состоит из водорода (70%) и углеводородов различного состава. Газы эти горючи, однако в масле горение невозможно из-за отсутствия кислорода. Количество масла, разлагаемого дугой, невелико, но объем образующихся газов велик. Один грамм масла дает приблизительно 1500 см3 газа, приведенного к комнатной температуре и атмосферному давлению.
Гашение дуги в масляных выключателях происходит наиболее эффективно при применении гасительных камер, которые ограничивают зону дуги, способствуют повышению давления в этой зоне и образованию газового дутья сквозь дуговой столб.
Гашение дуги в элегазовых выключателях
Элегаз (SFg — шестифтористая сера) представляет собой инертный газ, плотность которого превышает плотность воздуха в 5 раз. Электрическая прочность элегаза в 2—3 раза выше прочности воздуха; при давлении 0,2 МПа электрическая прочность элегаза сравнима с прочностью масла.
В элегазе при атмосферном давлении может быть погашена дуга с током, который в 100 раз превышает ток, отключаемый в воздухе при тех же условиях. Способность элегаза гасить дугу объясняется тем. что его молекулы улавливают электроны дугового столба и образуют относительно неподвижные отрицательные ионы. Потеря электронов делает дугу неустойчивой, и она легко гаснет. В струе элегаза поглощение электронов из дугового столба происходит еще интенсивнее.
В элегазовых выключателях применяют автопневматические дугогасительные устройства, в которых газ в процессе отключения сжимается поршневым устройством и направляется в зону дуги. Элегазовый выключатель представляет собой замкнутую систему без выброса газа наружу.
Гашение дуги в вакуумных выключателях
Электрическая прочность вакуумного промежутка во много раз больше, чем воздушного промежутка при атмосферном давлении. Это свойство используется в вакуумных дугогасительных камерах. Рабочие контакты имеют вид полых усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, действующее на возникающую дугу и заставляющее перемещаться ее через зазоры на дугогасительные контакты. Контакты представляют собой диски, разрезанные спиральными прорезями на три сектора, по которым движется дуга. Материал контактов подобран так, чтобы уменьшить количество испаряющегося металла. Вследствие глубокого вакуумапроисходит быстрая диффузия заряженных частиц в окружающее пространство и при первом переходе тока через нуль дуга гаснет.Подвод тока к контактам осуществляется с помощью медных стержней. Подвижный контакт крепится к верхнему фланцу с помощью сильфона из нержавеющей стали. Сильфон служит для обеспечения герметичности вакумной камеры. Металлическиеэкраны служат для выравнивания электрического поля и для защиты керамического корпуса от попадания паров металла, образующихся при гашении дуги.
2. Основные системы, обеспечивающие работу генераторов и синхронных компенсаторов.
3. Практическое задание
4. Задача.
Билет №21
1 .Векторные диаграммы вторичных токов трансформаторов тока при соединении вторичных обмоток в неполную звезду.
ТТ устанавливаются в две фазы и соединяются анологично схеме звезды.
Режим | Описание | Токи в фазах | Векторная диаграмма | Коэфициент схемы |
Нормальный режим | в реле проходят токи фаз, а в нулевом проводе их геометрическая сумма . | Iр=Iф Ксх=1 | ||
Трехфазное КЗ | токи проходят по обоим реле и в обратном проводе. | |||
Двухфазное КЗ | в зависимости от того, какие фазы повреждены токи проходят в одном или двух реле. Ток в обратном проводе при 2-х к.з. между фазами А и С, в которых установлены ТТ, с учетом Ia=-Ic, равен нулю, а при замыканиях между фазами АВ и ВС он соответственно равен Iоб=Ia и Iоб=Ic | |||
Однофазное КЗ | Схема реагирует на однофазные к.з. лиш в тех фазах в которых установлены ТТ. В следствии этого для защит от однофазных к.з. не применяяется |
2 . Релейная защита ЛЭП напряжением 110 кВ и выше. Схема МТЗ с дешунтированием отключающей катушки привода выключателя. Особенности выбора тока срабатывания защиты.
Рассмотрим защиты, используемые для ЛЭП (линий электропередач) 110 - 220 кВ, а также для коротких ЛЭП 330 кВ, переходные процессы в которых не отличаются от переходных процессов в ЛЭП 220 кВ.
- Максимальная токовая защита (МТЗ) используется для защиты радиальных линий.
- Токовая отсечка (ТО) действует при междуфазных, двухфазных и трехфазных КЗ. Она используется в дистанционной защите при близких КЗ как вспомогательная,
когда у реле сопротивления есть проблема мертвой зоны.
Мертвая зона дистанционной защиты – близкое К(3), когда
где – сопротивление системы, – напряжение реле.
При дальних КЗ получаем:
- Токовая защита нулевой последовательности (ТЗНП). Направленная защита. При К(1) реагирует на направление тока нулевой последовательности.
ШДЭ 2801 – ступенчатая защита для реализации функций резервных защит при наличие основной быстродействующей.
ШДЭ 2802 – два комплекта ступенчатых защит.
ПДЭ 2802 – направленная ВЧ защита, используется в качестве основной.
Защита лэп 500 кВ и выше.
Для ВЛ 500 кВ и выше выпускают следующие устройства Р.З. и автоматики в составе:
ПДЭ 2001 – дистанционная трехступенчатая защита;
ПДЭ 2002 – токовая направленная четырехступенчатая защита нулевой последовательности, токовая отсечка от межфазных К.З. и защита от неполнофазных режимов;
ПДЭ 2003 – направленная и дифференциально-фазная ВЧ защита;
ПДЭ 2004.01 – устройство одно и трехфазного АПВ;
ПДЭ 2004.02 – устройство трехфазного АПВ на три присоединения;
ПДЭ 2005 – УРОВ;
ПДЭ 2006 – защита шин.
Проблемы резервирования
При выполнении релейной защиты электрических систем приходится считаться с возможностью отказа в действии защиты или выключателя поврежденного элемента. Резервирование выполняется с точки зрения надежности электроснабжения потребителей.
1). Используются разные типы защит для земляных и между фазных КЗ: однофазные КЗ на землю – направленная токовая защита нулевой последовательности (НТЗНП), междуфазные КЗ – дистанционная защита.
2). На ответственных транзитных магистральных ЛЭП применяются защиты с абсолютной и относительной селективностью.
3). Основная защита трансформатора - дифференциальная (S≥6.3 МВ∙А), резервная – МТЗ, ТО, токовая защита с пуском по напряжению, газовая защита трансформатора.
Возможны два основных, принципиально различных способа резервирования: дальнее, выполняемое защитами с относительной селективностью смежных элементов, и ближнее, выполняемое защитами установки (станции или подстанции), на которой произошел отказ. В случае отказа выключателя поврежденного элемента все его защиты действуют через специальное устройство резервирования при отказе выключателя (УРОВ).
Пример. Если выключатель В5 не сработал, то необходимо отключить выключатели В7 и В4. Если есть линия с источником С5 (обозначена пунктиром), то необходимо отключить В8, т.к. идет подпитка места КЗ. У каждого выключателя свой источник питания.
На подстанции имеются:
· - шины сигнализации EN, ENR и др. Сигнализация может быть местной и центральной, осуществляется лампочками (световая), блинкерами, звуком.
· - шины управления ЕС.
· - шины питания соленоидов, выключателей. Питание: постоянный оперативный ток ±220; ±110; ±48 В; переменный оперативный ток (используется на подстанциях 6-35 кВ).
В соответствии с условиями резервирования по выполняемым функциям различают:
1. Основной называется защита, предназначенная для действия при всех или части видов повреждений в пределах всего элемента, например всей длины участка линии, с временем, меньшим, чем у других защит этого элемента.
2. Резервной называется защита, предусматриваемая для действия вместо основной в случаях, если последняя отказала или была выведена из работы, а также вместо отказавших защит смежных элементов или в случаях отказов их выключателей.
3. Вспомогательной называется защита, выполняющая некоторые дополнительные функции, например защиту мертвых зон, определяемых направленными элементами основных и резервных защит, ускорение отключения КЗ и т.п.
В распределительных сетях напряжением до 110 кВ обычно применяется дальнее резервирование. В системах более высоких напряжений, обычно имеющих более сложные схемы и оборудованных воздушными выключателями и выносными ТТ, преимущественно используется сочетание ближнего и дальнего резервирования, иногда с добавлением защит, устанавливаемых на шиносоединительных и секционных выключателях.
3. Практическое задание
Задача.
Билет №22
1. Графики электрической загрузки потребителей и их характеристики.
Электрическая нагрузка отдельных потребителей, а следовательно, и суммарная их нагрузка, определяющая режим работы электростанций в энергосистеме, непрерывно меняется. Принято отражать этот факт графиком нагрузки, т.е. диаграммой изменения мощности (тока) электроустановки во времени.
По виду фиксируемого параметра различают графики активной Р, реактивной Q, полной (кажущейся) S мощностей и тока I электроустановки.
Как правило, графики отражают изменение нагрузки за определенный период времени. По этому признаку их подразделяют на суточные (24 ч), сезонные, годовые и т.п.
По месту изучения или элементу энергосистемы, к которому они относятся, графики можно разделить на следующие группы:
· графики нагрузки потребителей, определяемые на шинах подстанций;
· сетевые графики нагрузки - на шинах районных и узловых подстанций;
· графики нагрузки энергосистемы, характеризующие результирующую нагрузку энергосистемы;
· графики нагрузки электростанций.
Графики нагрузки используют для анализа работы электроустановок, для проектирования системы электроснабжения, для составления прогнозов электропотребления, планирования ремонтов оборудования, а также в процессе эксплуатации для ведения нормального режима работы.