Параллельный интерфейс — LPT-порт
Порт параллельного интерфейса был введен в PC для подключения принтера — отсюда и пошло его название LPT-порт (Line PrinTer — построчный принтер). Традиционный, он же стандартный, LPT-порт (так называемый SPP-порт ) ориентирован на вывод данных, хотя с некоторыми ограничениями позволяет и вводить данные. Существуют различные модификации LPT-порта — двунаправленный, EPP, ECP и другие, расширяющие его функциональные возможности, повышающие производительность и снижающие нагрузку на процессор. Поначалу они являлись фирменными решениями отдельных производителей, позднее был принят стандарт IEEE 1284.
С внешней стороны порт имеет 8-битную шину данных, 5-битную шину сигналов состояния и 4-битную шину управляющих сигналов, выведенные на разъем-розетку DB-25S. В LPT-порте используются логические уровни ТТЛ, что ограничивает допустимую длину кабеля из-за невысокой помехозащищенности ТТЛ-интерфейса. Гальваническая развязка отсутствует — схемная земля подключаемого устройства соединяется со схемной землей компьютера. Из-за этого порт является уязвимым местом компьютера, страдающим при нарушении правил подключения и заземления устройств. Поскольку порт обычно располагается на системной плате, в случае его «выжигания» зачастую выходит из строя и его ближайшее окружение, вплоть до выгорания всей системной платы.
С программной стороны LPT-порт представляет собой набор регистров, расположенных в пространстве ввода-вывода. Регистры порта адресуются относительно базового адреса порта, стандартными значениями которого являются 3BCh, 378h и 278h. Порт может использовать линию запроса аппаратного прерывания, обычно IRQ7 или IRQ5. В расширенных режимах может использоваться и канал DMA.
Порт имеет поддержку на уровне BIOS — поиск установленных портов во время теста POST и сервисы печати Int 17h (см. п. 8.3.3) обеспечивают вывод символа (по опросу готовности, не используя аппаратных прерываний), инициализацию интерфейса и принтера, а также опрос состояния принтера. Практически все современные системные платы (еще начиная с PCI-плат для процессоров 486) имеют встроенный адаптер LPT-порта. Существуют карты ISA с LPT-портом, где он чаще всего соседствует с парой СОМ-портов, а также с контроллерами дисковых интерфейсов (FDC+IDE). LPT-порт обычно присутствует и на плате дисплейного адаптера MDA (монохромный текстовый) и HGC (монохромный графический «Геркулес»). Есть и карты PCI с дополнительными LPT-портами.
К LPT-портам подключают принтеры, плоттеры, сканеры, коммуникационные устройства и устройства хранения данных, а также электронные ключи, программаторы и прочие устройства. Иногда параллельный интерфейс используют для связи между двумя компьютерами — получается сеть, «сделанная на коленке» (LapLink).
Традиционный LPT-порт
Традиционный, он же стандартный, LPT-порт называется стандартным параллельным портом (Standard Parallel Port, SPP), или SPP-портом, и является однонаправленным портом, через который программно реализуется протокол обмена Centronics (см. п. 8.3.1). Название и назначение сигналов разъема порта (табл. 1.1) соответствуют интерфейсу Centronics.
Таблица 1.1 . Разъем стандартного LPT-порта
Контакт DB-25S | № провода в кабеле | Назначение I/O¹ | Бит² | Сигнал |
O/I | CR.0\ | Strobe# | ||
O(I) | DR.0 | Data 0 | ||
O(I) | DR.1 | Data 1 | ||
O(I) | DR.2 | Data 2 | ||
O(I) | DR.3 | Data 3 | ||
O(I) | DR.4 | Data 4 | ||
O(I) | DR.5 | Data 5 | ||
O(I) | DR.6 | Data 6 | ||
O(I) | DR.7 | Data 7 | ||
I³ | SR.6 | Ack# | ||
I | SR.7\ | Busy | ||
I | SR.5 | PaperEnd (PE) | ||
I | SR.4 | Select | ||
O/I | CR.1\ | Auto LF# (AutoFeed#) | ||
I | SR.3 | Error# | ||
O/I | CR.2 | Init# | ||
O/I | CR.3\ | Select In# | ||
18-25 | 10, 12, 14, 16, 18, 20, 22, 24, 26 | - | - | - |
¹ I/O задает направление передачи (вход-выход) сигнала порта. O/I обозначает выходные линии, состояние которых считывается при чтении из портов вывода; O(I) — выходные линии, состояние которых может быть считано только при особых условиях (см. ниже).
² Символом «\» отмечены инвертированные сигналы (1 в регистре соответствует низкому уровню линии).
³ Вход Ack# соединен резистором (10 кОм) с питанием +5 В.
Адаптер SPP-порта содержит три 8-битных регистра, расположенных по соседним адресам в пространстве ввода-вывода, начиная с базового адреса порта BASE (3BCh, 378h или 278h).
Data Register (DR) — регистр данных , адрес=BASE. Данные, записанные в этот регистр, выводятся на выходные линии Data[7:0]. Данные, считанные из этого регистра, в зависимости от схемотехники адаптера соответствуют либо ранее записанным данным, либо сигналам на тех же линиях, что не всегда одно и то же.
Status Register (SR) — регистр состояния (только чтение), адрес=BASE+1. Регистр отображает 5-битный порт ввода сигналов состояния принтера (биты SR.4-SR.7) и флаг прерывания. Бит SR.7 инвертируется — низкому уровню сигнала соответствует единичное значению бита в регистре, и наоборот.
Ниже описано назначение бит регистра состояния (в скобках даны номера контактов разъема порта).
♦ SR.7 — Busy — инверсное отображение состояния линии Busy (11): при низком уровне на линии устанавливается единичное значения бита — разрешение на вывод очередного байта.
♦ SR.6 — Ack (Acknowledge) — отображение состояния линии Ack# (10).
♦ SR.5 — РЕ (Paper End) — отображение состояния линии Paper End (12). Единичное значение соответствует высокому уровню линии — сигналу о конце бумаги в принтере.
♦ SR.4 — Select — отображение состояния линии Select (13). Единичное значение соответствует высокому уровню линии — сигналу о включении принтера.
♦ SR.3 — Error — отображение состояния линии Error# (15). Нулевое значение соответствует низкому уровню линии — сигналу о любой ошибке принтера.
♦ SR.2 — PIRQ — флаг прерывания по сигналу Ack# (только для порта PS/2). Бит обнуляется, если сигнал Ack# вызвал аппаратное прерывание. Единичное значение устанавливается по аппаратному сбросу и после чтения регистра состояния.
♦ SR[1:0] — зарезервированы.
Control Register (CR) — регистр управления, адрес=ВАSЕ+2, допускает запись и чтение. Регистр связан с 4-битным портом вывода управляющих сигналов (биты 0–3) для которых возможно и чтение; выходной буфер обычно имеет тип «открытый коллектор». Это позволяет корректно использовать линии данного регистра как входные при программировании их в высокий уровень. Биты 0, 1, 3 инвертируются.
Ниже описано назначение бит регистра управления.
♦ CR[7:6] — зарезервированы.
♦ CR.5 — Direction — бит управления направлением передачи (только для портов PS/2, см. ниже). Запись единицы переводит порт данных в режим ввода. При чтении состояние бита не определено.
♦ CR.4 — AckINTEN (Ack Interrupt Enable) — единичное значение разрешает прерывание по спаду сигнала на линии Ack# — сигнал запроса следующего байта.
♦ CR.3 — Select In — единичное значение бита соответствует низкому уровню на выходе Select In# (17) — сигналу, разрешающему работу принтера по интерфейсу Centronics .
♦ CR.2 — Init — нулевое значение бита соответствует низкому уровню на выходе Init# (16) — сигнал аппаратного сброса принтера.
♦ CR.1 — Auto LF — единичное значение бита соответствует низкому уровню на выходе Auto LF# (14) — сигналу на автоматический перевод строки (LF — Line Feed) по приему байта возврата каретки (CR). Иногда сигнал и бит называют AutoFD или AutoFDXT.
♦ CR.0 — Strobe — единичное значение бита соответствует низкому уровню на выходе Strobe# (1) — сигналу стробирования выходных данных.
Запрос аппаратного прерывания (обычно IRQ7 или IRQ5) вырабатывается по отрицательному перепаду сигнала на выводе 10 разъема интерфейса (Ack#) при установке CR.4=1. Во избежание ложных прерываний контакт 10 соединен резистором с шиной +5 В. Прерывание вырабатывается, когда принтер подтверждает прием предыдущего байта. Как уже было сказано, BIOS это прерывание не использует и не обслуживает.
Перечислим шаги процедуры вывода байта по интерфейсу Centronics с указанием требуемого количества шинных операций процессора.
1. Вывод байта в регистр данных (1 цикл IOWR#).
2. Ввод из регистра состояния и проверка готовности устройства (бит SR.7 — сигнал Busy). Этот шаг зацикливается до получения готовности или до срабатывания программного тайм-аута (минимум 1 цикл IORD#).
3. По получению готовности выводом в регистр управления устанавливается строб данных, а следующим выводом строб снимается. Обычно, чтобы переключить только один бит (строб), регистр управления предварительно считывается, что к двум циклам IOWR# добавляет еще один цикл IORD#.
Видно, что для вывода одного байта требуется 4–5 операций ввода-вывода с регистрами порта (в лучшем случае, когда готовность обнаружена по первому чтению регистра состояния). Отсюда вытекает главный недостаток вывода через стандартный порт — невысокая скорость обмена при значительной загрузке процессора. Порт удается разогнать до скоростей 100–150 Кбайт/с при полной загрузке процессора, что недостаточно для печати на лазерном принтере. Другой недостаток функциональный — сложность использования в качестве порта ввода.
Стандартный порт асимметричен — при наличии 12 линий (и бит), нормально работающих на вывод, на ввод работает только 5 линий состояния. Если необходима симметричная двунаправленная связь, на всех стандартных портах работоспособен режим полубайтного обмена — Nibble Mode . В этом режиме, называемом также Hewlett Packard Bi-tronics , одновременно принимаются 4 бита данных, пятая линия используется для квитирования. Таким образом, каждый байт передается за два цикла, а каждый цикл требует по крайней мере 5 операций ввода-вывода.
Схемотехника выходных буферов данных LPT-портов отличается большим разнообразием. На многих старых моделях адаптеров SPP-порт данных можно использовать и для организации ввода. Если в порт данных записать байт с единицами во всех разрядах, а на выходные линии интерфейса через микросхемы с выходом типа «открытый коллектор» подать какой-либо код (или соединить ключами какие-то линии со схемной землей), то этот код может быть считан из того же регистра данных. Однако выходным цепям передатчика информации придется «бороться» с выходным током логической единицы выходных буферов адаптера. Схемотехника ТТЛ такие решения не запрещает, но если внешнее устройство выполнено на микросхемах КМОП, их мощности может не хватить для «победы» в этом шинном конфликте. Однако современные адаптеры часто имеют в выходной цепи согласующий резистор с сопротивлением до 50 Ом. Выходной ток короткого замыкания выхода на землю обычно не превышает 30 мА. Простой расчет показывает, что даже в случае короткого замыкания контакта разъема на землю при выводе «единицы» на этом резисторе падает напряжение 1,5 В, что входной схемой приемника будет воспринято как «единица». Поэтому нельзя полагать, что такой способ ввода будет работать на всех компьютерах. На некоторых старых адаптерах портов выходной буфер отключается перемычкой на плате. Тогда порт превращается в обыкновенный порт ввода.