СРС 3. Методы неразрушающего контроля качества для дефектоскопии и толщинометрии строительных конструкций
Толщинометрия – это метод исследования толщины и целостности материалов. Существуют ультразвуковой, магнитный, механический, вихретоковый и наиболее перспективный на данный момент – электромагнитно-акустический методы исследования. Чтобы выбрать оптимальный метод и, соответственно, прибор (толщиномер) для контроля толщины и целостности материала необходимо учесть множество факторов.
Дефектоскопия - это поиск дефектов с помощью неразрушающих методов контроля, который обеспечивает заданный уровень надежности, позволяет добиваться увеличения долговечности с высокой эффективностью и производительностью. Средства неразрушающего контроля предназначены для обнаружения дефектов типа несплошности материала, измерения геометрических параметров деталей, оценки физико-химических свойств материала. При помощи дефектоскопов получают информацию в виде световых, звуковых, электрических и других сигналов о качестве контролируемых деталей, узлов и т.д.
Оптические методы — методы, осуществляемые визуально (для обнаружения поверхностных трещин и других дефектов размерами более 0,1—0,2 мм) или с помощью оптических приборов (эндоскопов), позволяющих обнаруживать аналогичные дефекты размерами более 30—50 мкм на внутренних поверхностях и в труднодоступных зонах.
Радиационные методы, использующие рентгеновское, гамма- и другие (например, электроны) проникающие излучения различных энергий, получаемые с помощью рентгеновских аппаратов, радиоактивных изотопов и других источников, позволяют обнаруживать внутренние дефекты размерами более 1—10% от толщины просвечиваемого сечения в изделиях толщиной (по стали) до 100 (рентгеновская аппаратуры) — 500 мм (при использовании быстрых электронов).
Радиоволновые методы основаны на изменении интенсивностей, сдвигов по времени или фазе и других параметров электромагнитных волн сантиметрового и миллиметрового диапазонов при распространении их в изделиях из диэлектрических материалов (резина, пластмассы и другие).
Тепловые методы — методы, использующие инфракрасное (тепловое) излучение нагретой детали для обнаружения неоднородности её строения (несплошность в многослойных изделиях, в сварных и паяных соединениях). Чувствительность современной аппаратуры (тепловизоры) позволяет зарегистрировать разность температур на поверхности контролируемой детали менее 1°С. Магнитные методы основаны на анализе магнитных полей рассеяния, возникающих а зонах расположения поверхностных и подповерхностных дефектов в намагниченных деталях из ферромагнитных материалов.
Акустические (ультразвуковые) методы — методы, использующие упругие волны широкого диапазона частот (0,5—25 МГц), вводимые в контролируемую деталь под различными углами. Распространяясь в материале детали, упругие волны затухают в различной степени, а встречая дефекты, отражаются, преломляются и рассеиваются. Анализируя параметры (интенсивность, направление и другие) прошедших и (или) отражённых волн, можно судить о наличии поверхностных и внутренних дефектов различной ориентировки размерами более 0,5—2 мм2. Контроль может быть проведён при одностороннем доступе. Возможно также измерение с погрешностью не более 0,05 мм толщины полых изделий (ограничениями являются значительная кривизна поверхности детали и сильное затухание ультразвуковых волн в материале).
Вихретоковые (электроиндуктивные) методы основаны на взаимодействии полей вихревых токов, возбуждённых датчиком дефектоскопа в изделии из электропроводящего материала, с полем этого же датчика. Эти методы Д. позволяют выявлять нарушения сплошности (трещины протяжённостью более 1—2 мм и глубиной более 0,1—0,2 мм, плёны, неметаллические включения), измерять толщину защитных покрытий на металле, судить о неоднородностях химического состава и структуры материала, о внутренних напряжениях.
Электрические методы основаны на использовании главным образом слабых постоянных токов и электростатических полей; позволяют обнаруживать поверхностные и подповерхностные дефекты в изделиях из металлических и неметаллических материалов и различать некоторые марки сплавов между собой.
Капиллярные методы основаны на явлении капиллярности, то есть, на способности некоторых веществ проникать в мелкие трещины. Обработка такими веществами повышает цвето- и светоконтрастность участка изделия, содержащего поверхностные трещины, относительно окружающей этот участок неповреждённой поверхности. Эти методы позволяют обнаруживать поверхностные трещины раскрытием более 0,01 мм, глубиной от 0,03 и протяжённостью от 0,5 мм в деталях из непористых материалов, в том числе, в деталях сложной формы, когда применение другие методов затруднено или исключено.
Течеискания методы основаны на измерении давления внутри полой герметизированной детали или интенсивности вытекания жидкости либо газа через образовавшееся нарушение герметичности.