Ультразвуковые корреляционные
Другим не столь популярным расходомером является ультразвуковой расходомер с последующей корреляцией (кросс-корреляция). Он позволяет устранить недостатки, свойственные допплеровским расходомерам. Они лучше работают для потока жидкости с твердыми частицами или турбулентного потока газа.
Электромагнитные расходомеры
Принцип электромагнитного измерения расхода
Еще в 1832 году Майкл Фарадей пробовал определить скорость течения реки Темзы, измеряя напряжение, индуцируемое в потоке воды магнитным полем Земли. Принцип электромагнитного измерения расхода основан на законе индукции Фарадея. В соответствии с данным законом, напряжение создаётся, когда проводящая жидкость проходит через магнитное поле электромагнитного расходомера. Это напряжение пропорционально скорости потока среды.
Индуцированное напряжение измеряется либо двумя электродами, находящимися в контакте со средой, либо ёмкостными электродами, не контактирующими со средой, и передаётся в преобразователь сигналов. Преобразователь сигналов усиливает сигнал и преобразует его в стандартный токовый сигнал (4-20 мА), а также в частотно-импульсный сигнал (например, один импульс на каждый кубический метр измеряемой среды, прошедшей через измерительную трубу). Принцип действия электромагнитных расходомеров основан на взаимодействии движущейся электропроводной жидкости с магнитным полем. При движении жидкости в магнитном поле возникает ЭДС, как в проводнике движущемся в магнитном поле. Эта ЭДС пропорциональна скорости потока, и по скорости потока можно определить расход.
Кориолисовые расходомеры
Кориолисов расходомер
Принцип действия массовых расходомеров основан на эффекте Кориолиса. Массовый расход жидкостей и газов можно рассчитать по деформации измерительной трубы под действием потока. Плотность среды также можно рассчитать по резонансной частоте колебаний вибрирующей трубы. Вычисление силы Кориолиса осуществляется с помощью двух сенсорных катушек. При отсутствии потока оба сенсора регистрируют одинаковый синусоидальный сигнал. При появлении потока сила Кориолиса воздействует на поток частиц среды и деформирует измерительную трубу, что приводит к сдвигу фаз между сигналами сенсоров. Сенсоры измеряют сдвиг фаз синусоидальных колебаний. Этот сдвиг фаз прямо пропорционален массовому расходу.
Вихревой расходомер
Вихревые расходомеры
Принцип измерения базируется на эффекте вихревой дорожки Кармана: Позади тела обтекания образуются вихри обратного направления вращения. В измерительной трубе находится завихритель, позади которого происходит вихреобразование. Частота вихреобразования пропорциональна расходу. Образующиеся вихри улавливаются и подсчитываются пьезоэлементом в первичном преобразователе в качестве ударных волн. Вихревые расходомеры подходят для измерения самых различных сред.
Тепловые расходомеры
Расходомеры теплового пограничного слоя
Калориметрические расходомеры
В калориметрических расходомерах происходит нагревание или охлаждение потока внешним источником тепла, который создаёт в потоке разницу температур, по которой определяют расход.
{\displaystyle Q_{M}={\frac {0,24IR}{k_{0}c_{p}\Delta T}}}Меточные расходомеры
Вопрос 3. Перечень работ при техническом обслуживании оптического пирометра.
Ответ. Нет ответа.
Вопрос 4. Соблюдение техники безопасности при производстве работ без снятия напряжения.
Ответ. Производство работ
Б2.1.22. Работы в электроустановках в отношении мер безопасности подразделяются на выполняемые:
со снятием напряжения;
без снятия напряжения на токоведущих частях и вблизи них;
без снятия напряжения вдали от токоведущих частей, находящихся под напряжением.
При одновременной работе в электроустановках напряжением до и выше 1000 В категории работ определяются применительно к электроустановкам напряжением выше 1000 В.
Б2.1.23.К работам, выполняемым со снятием напряжения, относятся работы, которые производятся в электроустановке (или части ее), в которой с токоведущих частей снято напряжение.
Б2.1.24. К работам, выполняемым без снятия напряжения на токоведущих частях и вблизи них, относятся работы, проводимые непосредственно на этих частях.
В электроустановках напряжением выше 1000 В, а также на воздушных линиях электропередачи (ВЛ) напряжением до 1000 В к этим же работам относятся работы, выполняемые на расстояниях от токоведущих частей меньше указанных в табл. Б2.1.1.
Работы без снятия напряжения на токоведущих частях и вблизи них должны выполнять не менее чем два лица, из которых производитель работ должен иметь группу по электробезопасности не ниже IV, остальные - не ниже III.
Б2.1.25. Работой без снятия напряжения вдали от токоведущих частей, находящихся под напряжением, считается работа, при которой исключено случайное приближение работающих людей и используемых ими ремонтной оснастки и инструмента к токоведущим частям на расстояние меньше указанного в табл. Б2.1.1 и не требуется принятия технических или организационных мер (например, непрерывного надзора) для предотвращения такого приближения.
Б2.1.26.В электроустановках напряжением выше 1000 В работы без снятия напряжения на токоведущих частях и вблизи них должны производиться с применением средств защиты для изоляции человека от токоведущих частей либо от земли. При изоляции человека от земли работы должны осуществляться в соответствии со специальными инструкциями или технологическими картами, в которых предусмотрены необходимые меры безопасности.
Б2.1.27. При работе в электроустановках напряжением до 1000 В без снятия напряжения на токоведущих частях и вблизи них необходимо:
оградить расположенные вблизи рабочего места другие токоведущие части, находящиеся под напряжением, к которым возможно случайное прикосновение;
работать в диэлектрических галошах или стоя на изолирующей подставке либо на диэлектрическом ковре;
применять инструмент с изолирующими рукоятками (у отверток, кроме того, должен быть изолирован стержень); при отсутствии такого инструмента пользоваться диэлектрическими перчатками.
Б2.1.28. при производстве работ без снятия напряжения на токоведущих частях с помощью изолирующих средств защиты необходимо:
держать изолирующие части средств защиты за рукоятки до ограничительного кольца;
располагать изолирующие части средств защиты так, чтобы не возникла опасность перекрытия по поверхности изоляции между токоведущими частями двух фаз или замыкания на землю;
пользоваться только сухими и чистыми изолирующими частями средств защиты с неповрежденным лаковым покрытием.
При обнаружении нарушения лакового покрытия или других неисправностей изолирующих частей средств защиты пользование ими должно быть немедленно прекращено.
Б2.1.29. При работе с применением электрозащитных средств (изолирующие штанги и клещи, электроизмерительные клещи, указатели напряжения) допускается приближение человека к токоведущим частям на расстояние, определяемое длиной изолирующей части этих средств.
Б2.1.30. Без применения электрозащитных средств запрещается прикасаться к изоляторам электроустановки, находящейся под напряжением.
Б2.1.31. В электроустановках запрещается работать в согнутом положении, если при выпрямлении расстояние до токоведущих частей будет меньше указанного в графе 2 табл. Б2.1.1. При производстве работ около неогражденных токоведущих частей запрещается располагаться так, чтобы эти части находились сзади или с обеих боковых сторон.
Б2.1.32. Вносить длинные предметы (трубы, лестницы и т.п.) и работать с ними в РУ, в которых не все части, находящиеся под напряжением, закрыты ограждениями, исключающими возможность случайного прикосновения, нужно с особой осторожностью вдвоем под постоянным наблюдением производителя работ.
Применяемые для ремонтных работ подмости и лестницы должны быть изготовлены по ГОСТ или ТУ на них. Основания лестниц, устанавливаемых на гладких поверхностях, должны быть обиты резиной, а на основаниях лестниц, устанавливаемых на земле, должны быть острые металлические наконечники. Лестницы должны верхним концом надежно опираться на прочную опору. При необходимости опереть лестницу на провод она должна быть снабжена крючками в верхней части. Связанные лестницы применять запрещается.
При установке приставных лестниц на подкрановых балках, элементах металлических конструкций и т.п. необходимо надежно прикрепить верх и низ лестницы к конструкциям.
При обслуживании, а также ремонтах электроустановок применение металлических лестниц запрещается.
Работу с использованием лестниц выполняют два лица, одно из которых находится внизу.
Работа с ящиков и других посторонних предметов запрещается.
Б2.1.33. Работы на концевых опорах воздушных линий электропередачи (ВЛ), находящихся на территории открытых распределительных устройств (ОРУ), должны производиться в соответствии с требованиями гл. Б3.12.
Ремонтный персонал линий, перед тем как войти в ОРУ, должен быть проинструктирован и препровожден к месту работ лицом из оперативного персонала с группой по электробезопасности не ниже -III; выходить из ОРУ после окончания работы или во время перерыва персоналу разрешается под надзором производителя работ.
Б2.1.34. В пролетах пересечения в ОРУ и на ВЛ при замене проводов, тросов и относящихся к ним изоляторов и арматуры, расположенных ниже проводов, находящихся под напряжением, через заменяемые провода; тросы должны быть перекинуты канаты из растительных или синтетических волокон. Канаты следует перекидывать в двух местах - по обе стороны от места пересечения, закрепляя их концы за якоря, конструкции и т.п.
Подъем провода (троса) должен осуществляться медленно и плавно.
Работы на проводах, тросах и относящихся к ним изоляторах, арматуре, расположенных выше проводов, тросов, находящихся под напряжением, могут быть допущены при условии составления плана производства работ, утверждаемого главным инженером предприятия, в котором должны быть предусмотрены меры, препятствующие опусканию проводов, и меры по защите от наведенного напряжения. Замена проводов и тросов при этих работах без снятия напряжения с пересекаемых проводов запрещается.
Б2.1.35. Работы на ВЛ в зоне наведенного напряжения, связанные с прикосновением к проводу (тросу), опущенному с опоры вплоть до земли, должны производиться с применением электрозащитных средств (перчатки, штанги) или с металлической площадки, соединенной для выравнивания потенциала проводником с этим проводом (тросом). Допускается производство работ с земли без применения электрозащитных средств и металлической площадки при условии наложения заземления на провод (трос) в непосредственной близости к каждому месту прикосновения, но не далее 3 м от работающих людей.
Б2.1.36. При приближении грозы должны быть прекращены все работы на ВЛ и в ОРУ, а в ЗРУ - работы на вводах и коммутационной. аппаратуре, непосредственно подсоединенной к воздушным линиям.
Во время дождя и тумана запрещаются работы, требующие применения защитных изолирующих средств.
Б2.1.37. При обнаружении замыкания на землю запрещается приближаться к месту замыкания на расстояние менее 4 м в закрытых и менее 8 м в открытых РУ.
Приближение к этому месту на более близкое расстояние допускается только для производства операций с коммутационной аппаратурой для ликвидации замыкания на землю, а также при необходимости оказания первой помощи пострадавшим.
В этих случаях обязательно следует пользоваться как основными, так и дополнительными электрозащитными средствами.
Б2.1.38. Персоналу следует помнить, что после исчезновения напряжения с электроустановки оно может быть подано вновь без предупреждения.
Б2.1.39. Установка и снятие предохранителей, как правило, производятся при снятом напряжении. Под напряжением, но без нагрузки допускается снимать и устанавливать предохранители на присоединениях, в схеме которых отсутствуют коммутационные аппараты.
Под напряжением и под нагрузкой допускается снимать и устанавливать предохранители трансформаторов напряжения и предохранители пробочного типа в электроустановках напряжением до 1000 В.
Б2.1.40. При снятии и установке предохранителей под напряжением необходимо пользоваться:
в электроустановках напряжением выше 1000 В - изолирующими клещами (штангой), диэлектрическими перчатками и защитными очками (маской);
в электроустановках напряжением до 1000 В - изолирующими клещами или диэлектрическими перчатками, а при наличии открытых плавких вставок и защитными очками (маской).