Вопрос 1. Действие проводника с током в магнитном поле. Единицы измерения напряжения и силы тока.
Ответ. Действие магнитного поля на ток. Правило левой руки.
Поместим между полюсами магнита проводник, по которому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.
Объяснить это можно следующим образом. Вокруг проводника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направлены так же, как и силовые линии магнита, а по другую сторону проводника — в противоположную сторону. Вследствие этого с одной стороны проводника (на рисунке 1 сверху) магнитное поле оказывается сгущенным, а с другой его стороны (на рисунке 1 снизу) - разреженным. Поэтому проводник испытывает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.
Рисунок 1. Действие магнитного поля на ток.
Правило левой руки
Для быстрого определения направления движения проводника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).
Рисунок 2. Правило левой руки.
Правило левой руки состоит в следующем: если поместить левую руку между полюсами магнита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца руки совпадали с направлением тока в проводнике, то большой палец покажет направление движения проводника.
Итак, на проводник, по которому протекает электрический ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказывается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая находится в магнитном поле (рисунок 3 слева).
Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.
Рисунок 3. Сила взаимодействия магнитного поля и тока.
Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изображено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную магнитным силовым линиям. Отсюда следует, что если проводник параллелен магнитным силовым линиям, то сила, действующая на него, равна нулю. Если же проводник перпендикулярен направлению магнитных силовых линий, то сила, действующая на него, достигает наибольшей величины.
Сила, действующая на проводник с током, зависит еще и от магнитной индукции. Чем гуще расположены магнитные силовые линии, тем больше сила, действующая на проводник с током.
Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:
Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную магнитному потоку.
Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Действие магнитного поля на ток можно наблюдать даже при отсутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.
Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электродинамических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп — магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.
Сила тока — физическая величина {\displaystyle I}, равная отношению количества заряда {\displaystyle \Delta Q}, прошедшего через некоторую поверхность за время {\displaystyle \Delta t}, к величине этого промежутка времени[1].
В качестве рассматриваемой поверхности часто используется поперечное сечение проводника.
Обычно обозначается символом {\displaystyle I}, от фр. intensité du courant.
Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A), ампер является одной из семи основных единиц СИ. 1 А = 1 Кл/с.
По закону Ома сила тока {\displaystyle I} для участка цепи прямо пропорциональна приложенному напряжению {\displaystyle U} к участку цепи и обратно пропорциональна сопротивлению {\displaystyle R} проводника этого участка цепи
Носителями заряда, движение которых приводит к возникновению тока, являются заряженные частицы, в роли которых обычно выступают электроны, ионы или дырки. Сила тока зависит от заряда {\displaystyle q} этих частиц, их концентрации {\displaystyle n}, средней скорости упорядоченного движения частиц {\displaystyle {\vec {v_{cp}}}}, а также площади {\displaystyle S} и формы поверхности, через которую течёт ток.
Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно работе эффективного электрического поля (включающего сторонние поля), совершаемой при переносе единичного пробного электрического заряда из точки A в точку B[1].
При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). Напряжение в общем случае формируется из вкладов двух работ: работы электрических сил {\displaystyle A_{AB}^{el}} и работы сторонних сил {\displaystyle A_{AB}^{ex}}. Если на участке цепи не действуют сторонние силы (то есть, {\displaystyle A_{AB}^{ex}=0}), работа по перемещению включает только работу потенциального электрического поля {\displaystyle A_{AB}^{el}} (которая не зависит от пути, по которому перемещается заряд), и электрическое напряжение {\displaystyle U_{AB}} между точками A и B совпадает с разностью потенциалов между этими точками (поскольку {\displaystyle \varphi _{A}-\varphi _{B}=A_{AB}^{el}/q}). В общем случае напряжение {\displaystyle U_{AB}} между точками Aи B отличается от разницы потенциалов между этими точками[2] на работу сторонних сил по перемещению единичного положительного заряда. Эту работу называют электродвижущей силой {\displaystyle {\mathcal {E}}_{AB}} на данном участке цепи.{\displaystyle {\mathcal {E}}_{AB}=A_{AB}^{ex}/q.}{\displaystyle U_{AB}=\varphi _{A}-\varphi _{B}+{\mathcal {E}}_{AB}.}
Определение электрического напряжения можно записать в другой форме. Для этого нужно представить работу {\displaystyle A_{AB}^{ef}} как интеграл вдоль траектории L, проложенной из точки A в точку B.
{\displaystyle U_{AB}=\int \limits _{L}{\vec {E}}_{ef}d{\vec {l}}} Интеграл от проекции эффективной напряжённости поля {\displaystyle {\vec {E}}_{ef}} (включающего сторонние поля) на касательную к траектории L, направление которой в каждой точке траектории совпадает с направлением вектора {\displaystyle d{\vec {l}}} в данной точке. В электростатическом поле, когда сторонних сил нет, значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.
Размерность электрического напряжения в Международной системе величин (англ. International System of Quantities, ISQ), на которой основана Международная система единиц (СИ), — L2MT-3I-1. Единицей измерения напряжения в СИ является вольт (русское обозначение: В; международное: V).
Понятие напряжение ввёл Георг Ом в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 году эмпирического закона Ома: U=IR{\displaystyle U\!=IR}.