Разработка структурной схемы

Проанализируем как должно работать разрабатываемое устройство. Часы обязательно должны содержать устройство измерения времени, которое в свою очередь всегда состоит из генератора эталонных интервалов времени и счётчика этих интервалов. Структурная схема устройства измерения времени приведена на рисунке 12.1.1.

Разработка структурной схемы - student2.ru
Рисунок 12.1.1 Структурная схема устройства измерения времени

В качестве генератора эталонных импульсов в различное время использовали различные устройства. Это и вытекание воды или песка из какой-либо ёмкости и движение тени от солнца по циферблату и даже горение нити в огненных китайских часах.

В простейшем случае генератор импульсов эталонной длительности должен вырабатывать минутные импульсы. В простейшем случае генератор импульсов эталонной длительности должен вырабатывать минутные импульсы. Однако реализовать стабильный генератор такой длительности достаточно сложно. Даже в механических часах в качестве генератора импульсов эталонной длительности использовался маятник с периодом колебаний от одной до нескольких секунд.

В качестве генератора эталонных импульсов мог бы подойти кварцевый генератор, так как этот тип генераторов обладает высокой стабильностью колебаний. Но кварцевые генераторы вырабатывают колебания в диапазоне от 1 до 30 МГц. Это соответствует временным интервалам от 0.03 до 1 мкС. Тем не менее, если воспользоваться делителем частоты, выполненном на двоичном счетчике, то можно получить импульсы с периодом 1 минута.

Выберем частоту работы кварцевого генератора. Здесь можно использовать кварцевый резонатор с частотой 32768Гц, предназначенный для использования в часах. Этот резонатор специально разрабатывался для применения в часах, поэтому его частота кратна степени двойки (215 = 32768). В результате можно использовать обычный двоичный делитель.

Здесь хотелось бы отметить, какая грандиозная задача была решена разработчиками кварцевых кристаллов. Дело в том, что если посчитать длину акустической волны в кварце, то кварцевый резонатор получился бы впечатляющих размеров. Толщину кристалла кварца можно определить по общеизвестной формуле для длины волны. Как известно скорость распространения звуковой волны в кристалле кварца равна 5570м/с, тогда длина волны будет равна:

L = v/f = 5570/32768 = 17см где v - это скорость звука в кристалле кварца; f - резонансная частота.

То есть толщина кварцевого резонатора должна быть как минимум равна половине длины волны - 8,5см. Ну, как, впечатляет? Длина кварцевого кристалла соответственно должна быть, по крайней мере, в пять раз больше. Казалось бы, это неразрешимая проблема для малогабаритных и дешёвых устройств, однако разработчики кварцевого резонатора сумели решить её.

Первым решением проблемы является то, что низкочастотные кварцевые резонаторы изготавливаются с использованием не объемных, а поверхностных волн. Точнее крутильных колебаний. В результате в резонаторе используется вся его длина. Скорость распространения волны по поверхности кварца значительно ниже скорости распространения волны в его объеме и равна 3515м/с. Однако даже в этом случае размеры кварцевого резонатора получаются значительными:

L = v/f = 3515/32768 = 10,7см где v - это скорость звука в кристалле кварца; f - резонансная частота.

Решением проблемы оказалась разработка кварцевого резонатора, реализованного по принципу камертона. В таком резонаторе возбуждаются не объемные колебания, а колебания двух параллельно расположенных стержней, как это показано на рисунке 12.1.2.

Разработка структурной схемы - student2.ru

В такой конструкции частота резонанса зависит от упругости кварца, длины и толщины зубьев получившейся вилки камертона.

Стоимость часовых кварцевых резонаторов оказалась минимальной из всех кварцевых резонаторов. Благодаря своей распространённости, малой цене, габаритам и малой частоте часовые кварцевые резонаторы начинают применяться практически во всех цифровых устройствах.

Для нас полезными свойствами часового кварцевого резонатора является малая цена, малые габариты, кратность частоты одному герцу и относительно малая частота резонанса. Последнее свойство определяет частоту задающего генератора, и, как следствие, малое потребление тока этим генератором от источника питания.

Итак, для формирования секундных импульсов (частота 1 Гц) потребуется делитель частоты на 32768. Для формирования из секундных импульсов минутных импульсов потребуется ещё один делитель частоты. Так как в минуте содержится 60 секунд, то нам потребуется делитель на 60. Уточнённая структурная схема разрабатываемого цифрового устройства приведена на рисунке 12.1.2.

Разработка структурной схемы - student2.ru
Рисунок 12.1.2. Уточнённая структурная схема устройства измерения времени

Теперь займёмся схемой счётчика временных интервалов. Он будет состоять из счетчика минут и счётчика часов. Мы знаем, что счётчик минут должен работать по основанию 60. В то же самое время мы привыкли воспринимать числа в десятичной системе счисления. Поэтому будет удобно разбить счётчик минут на два счётчика: на десятичный счётчик и счётчик, считающий до шести.

Счетчик часов можно выполнить по основанию 12 и по основанию 24. Пусть в наших часах счётчик будет работать по основанию 24. При этом для удобства отображения информации, также как и в счётчике минут, реализуем его на двух десятичных счетчиках.

Следующий блок, который обязательно должен входить в состав часов — это устройство индикации. Ведь никого не устроят часы, которые будут точно отсчитывать время, но при этом мы не сможем увидеть результат!

Выберем в качестве устройства отображения времени светодиодные семисегментные индикаторы. В этом случае мы получим устройство, способное работать при отрицательной температуре и обладающее при этом наиболее простой схемой.

Для преобразования кода, в котором работает счётчик минутных импульсов, в семисегментный код нам потребуетсядешифратор. То есть, блок индикации будет состоять из дешифраторов и собственно индикаторов. Уточнённая структурная схема часов приведена на рисунке 12.1.3.

Разработка структурной схемы - student2.ru
Рисунок 12.1.3. Структурная схема часов

И, наконец, последнее замечание. Любые часы время от времени требуют коррекции своего значения с целью синхронизации своих показаний с всемирным временем. В нашей схеме это будет делать блок коррекции, который в свою очередь будет состоять из кнопок и схемы установки внутреннего состояния счётчика временных интервалов.

На этом можно завершить разработку структурной схемы. Полная структурная схема часов с учётом блока индикации и блока коррекции времени приведена на рисунке 12.1.4.

Разработка структурной схемы - student2.ru
Рисунок 12.1.4. Уточнённая структурная схема часов

Теперь, после того как составлена структурная схема часов, можно приступить к разработке их принципиальной схемы.

Глава 2

Наши рекомендации