Фильтры с повторителями напряжения
Двойной Т-образный мост. Характеристики режекторного фильтра, представляющего двойной Т-образный мост (рис. 5.21, а), определяются выражениями коэффициент передачи
фазовая характеристика
где fо=1/2пRС и e=l/Q. На рис. 5.21,6 и в соответственно представлены АЧХ и ФЧХ для ряда значений Q.
Пассивный фильтр. Для расчета параметров схемы (рис. 5.22) принимается С1 — С и R3 = R, где 2пf0 = I/RC — средняя частота.
Рис. 5.21
Номиналы других элементов определяются следующим образом: R1 = KR, R2 = 6R, С2 = С/к, C3 = C/b. Условие нулевого затухания на средней частоте fо имеет вид b = к/(к — 1), в то время как условием получения максимума передаточной функции (коэффициент усиления больше 1)
На средней частоте сигнал на входе фильтра находится в фазе с входным сигналом. Максимальный коэффициент усиления имеет место, когда к приближается к бесконечности, а b= 1,207. На практике можно принять k=100, тогда коэффициент усиления будет равен 1,2.
Комбинированный двойной Т-образный фильтр. С помощью фильтров (рис. 5.23, а, б) можно регулировать затухание на центральной частоте. Схемы фильтров имеют два входа. Сигнал для входа mUBX получается с помощью усилителя, схема которого приведена на рис. 5.23, в. При изменении положения движка потенциометра т изменяется от +1 до — 1. Усилитель имеет низкое выходное сопротивление и не влияет на точность установки центральной частоты фильтра при изменении сопротивления резистора R/2.
Рис. 5.22 Рис. 5.23
Для первого фильтра коэффициент передачи будет определяться выражением
где x = w/w0, w0=1/RС.
При x=1, К=т. Для второго фильтра
При х=1 K = m/2.
Рис. 5.24 Рис. 5.25
Полосовой фильтр. Фильтр (рис. 5.24, а) содержит два звена ФВЧ и два звена ФНЧ. Для устранения связи между RC в схему введен ОУ, включенный по схеме повторителя. Для увеличения частотной селекции входного сигнала можно последовательно включить несколько каскадов. Схема включения ОУ приведена в гл. 1. На рис. 5.24, б приведены АЧХ звеньев для ряда значений элементов.
Режекторный фильтр с ОС.Наличие ОС в двойном Т-образном фильтре (рис. 5.25) позволяет увеличить его добротность- с 0,25 до 30. Центральная частота фильтра 50 Гц. На частоте 52 Гц затухание составляет 1- дБ. Если применить регулируемую ОС, введя в цепь эмиттера транзистора VT2 потенциометр, то можно изменять полосу затухания фильтра. В фильтре можно применить интегральную микросхему К198НТ4А, которая представляет собой сборку из трех транзисторов.
Комбинированный режекторный фильтр. Двойной Т-образный мост (рис. 5.26, а) имеет частоту режекции 1,5 кГц. При использовании в схеме элементов с допуском 5% не удается получить достаточного подавления сигнала на режекторной частоте. Чтобы увеличить подавление, необходимо подбирать сопротивление резистора R6. Ослабление сигнала на режекторной частоте при этом может достигать 103 раз. Частоту режекцин фильтра можно изменять подбором сопротивления резистора R2. Изменение частотной характеристики в зависимости от сопротивлений резисторов R1 и R2 показано на рис. 5.26,6.
Рис. 5.26
ФИЛЬТРЫ НА УСИЛИТЕЛЯХ
Фильтр с ООС. В схеме фильтра двойной Т-образный мост включен в цепь ОС (рис. 527). На квазирезонансной частоте 500 Гц полоса пропускания равна 30 Гц. Для перестройки фильтра на другие частоты необходимо изменить номиналы конденсаторов. Конденсаторы рассчитываются по формуле С1 — С2 (пФ)=2500/f (кГц), СЗ — 2С1. Точная установка на среднюю частоту осуществляется изменением сопротивления резистора R3. Каскад устойчиво работает при использовании источника сигнала с малым внутренним сопротивлением.
Рис. 5.27 Рис. 5.28
Рис. 5.29
Мостовой фильтр. Активный полосовой фильтр (рис. 5.28) имеет центральную частоту 70 Гц и полосу пропускания 10 Гц. Коэффициент передачи равен 7. При изменении емкостей конденсаторов можно менять центральную частоту. Добротность фильтра на частотах до 20 Гц меньше 5.
Фильтр с мостом Вина. Активный фильтр (рис. 5.29, а) позволяет ослабить более чем на 60 дБ сигнал, частота которого совпадает с частотой настройки моста Вина. Максимальное ослабление достигается при подстройке резистора R3. Частоту настройки фильтра можно менять, если вместо постоянных резисторов R6 и R7 применить сдвоенный потенциометр, при этом частота режекции f0=1/2пRбС2=1/2пR7С3. Фильтр работает в диапазоне частот от единиц герц до сотен килогерц. Добротность фильтра остается неизменной для любых номиналов резисторов и конденсаторов во всем частотном диапазоне. Усилительный каскад в схеме фильтров должен обеспечить коэффициент усиления базового сигнала на коллекторе около 2. Поэтому сопротивления резисторов R3 и R4 должны быть в два раза больше сопротивления резистора R5. Точность в настройке фильтра приводит к появлению на выходе сигнала с двойной частотой. На рис. 5.29, б приведен вид АЧХ фильтра.
Рис. 5.30 Рис. 5.31
Усилитель с частотно-зависимой ОС.Усилитель построен по схеме RС-генератора с фазосдвигающей цепочкой (рис. 5.30). Схема не возбуждается, поскольку коэффициент передачи транзистора искусственно снижен. Регулировка коэффициента усиления схемы с помощью резистора R6 позволяет изменять добротность фильтра. Для приведенных на схеме элементов она должна быть больше 20. В фазосдвигающей цепочке с помощью резистора R2 можно регулировать резонансную частоту в пределах от 800 Гц до 1 кГц.
Полосовой фильтр. Фильтр построен на ОУ, в цепь ООС которого включен двойной Т-образный мост (рис. 5.31, о). Резонансная частота моста определяется выражением fo==l/2пR2C2. Максимум усиления фильтра на резонансной частоте зависит от коэффициента усиления ОУ и точности настройки моста. При точности номиналов элементов 0.1% коэффициент передачи фильтра превышает 50 дБ. На рис. 5.31,6 показана АЧХ фильтра.
ПОЛОСОВЫЕ ФИЛЬТРЫ
Заграждающий фильтр. Фильтр построен на двойном Т-образном мосте, включенном в цепь ОС ОУ (рис. 5.32, а). Центральная частота фильтра определяется выражением f0=l/2nRC при С1 = С2=С, СЗ=2С, R1=R2=R, R3=R/2. Желательно иметь следующую точность номиналов элементов: для R — 0,1%, а для С — 1%. Полоса пропускания и амплитуда сигнала регулируются резистором R4. В гл. 1 приведена схема включения ОУ. На рис. 5.32,6 проиллюстрирована возможность изменять пределы регулирования АЧХ фильтра.
Узкополосный селективный фильтр. Селективный фильтр (рис. 5.33, а) имеет центральную частоту, определяемую выражением
Рис. 5.32
Рис. 5.33
Коэффициент передачи фильтра на резонансной частоте K=R1C1/Rs(C1+C2). Добротность фильтра определяется из выражения
Настройка фильтра достаточно трудоемка. Регулировка добротности осуществляется с помощью резистора R2. Центральная частйта устанавливается одновременной регулировкой R2 и R3, при сохранении их отношения. При выполнении последнего условия регулировка мало влияет на добротность фильтра. На рис. 5.33,6 приведен примерный вид АЧХ фильтра.
Фильтр с регулируемой центральной частотой. Избирательный $ильтр построен на ОУ, в цепи С которого включена RС-цепь (рис. 5.34). С помощью резистора R6 может меняться центральная частота фильтра в пределах от 0,5 до 2,5 кГц. Добротность фильтра можно регулировать резистором R3. Она меняется в пределах от 10 до 100. Следует учесть, что применение в схеме резистора R2 с номиналом более 30 кОм нарушает устойчивость схемы. При перестройке центральной частоты фильтра добротность и коэффициент передачи не меняются. Пропорциональное изменение емкостей конденсаторов С1 — СЗ позволяет изменить частоту настройки фильтра в широких пределах от 10 Гц до 100 кГц. В ОУ корректирующий конденсатор емкостью 100 пФ включен между выводами 1 и 12.
Рис. 5.34 Рис. 5.35
Обратный Т-образный мост. При выборе номиналов элементов активного фильтра с двойным Т-образным мостом (рис. 5.35,6) можно руководствоваться описанием элементов эквивалентной схемы фильтра на рис. 5.35, а. Комплексные сопротивления плеч моста могут быть записаны Z1=2R+jwRC' и 22= 1/R'w2C2 — j2/wC, где w = 2пf — резонансная частота. В первом случае половина моста эквивалентна индуктивности L9 = RC' при Rb = 2R, а во втором — емкости Сэ = С/2 при Rc = — 1/R'w2С2. Добротность фильтра определяется выражением Q = wL3/RL — |Rc|. Если Rc будет больше RL, фильтр превращается в генератор. Изображенный на рис. 5.35,6 фильтр имеет резонансную частоту 1 кГц, добротность 9.
Рис. 5.36
Рис. 5.37
Управляемый полосовой фильтр. Фильтр (рис. 5.36, а) позволяет получить на центральной частоте коэффициент передачи, близкий к нулю. Резистором R4 устанавливается нулевой фазовый сдвиг на центральной частоте. Центральная частота определяется по формуле f0 = З-2/2пRС при R2=R3=R и С1 = С2 = СЗ=С, R4 = R/12. Сопротивление нагрузки фильтра должно быть значительно больше сопротивления резистора R2 (R3). При этом уменьшается падение напряжения на резисторах R2 (R3) и возникает некоторая асимметрия АЧХ. Для центральной частоты f0 = 55 кГц R2 = R3=10 кОм, С1 = С2 = СЗ = 5 НФ, R4 = 820 Ом. На рис. 5.36, б показана форма передаточной характеристики фильтра. Октавный фильтр. Основные параметры фильтра на ОУ (рис. 5.37, а) определяются по формулам
где fо — центральная частота. Сопротивление резистора $3 должно учитывать внутреннее сопротивление источника сигнала. Оно не должно быть больше 10 кОм. На рис. 5.35,6 приведен вид ряда АЧХ звеньев фильтра.
ПЕРЕСТРАИВАЕМЫЕ ФИЛЬТРЫ
Перестраиваемый фильтр. Узкополосный фильтр (рис. 5.38) построен на базе моста Вина. С помощью резистора R3 можно изменять добротность вплоть до 2000. Для предотвращения автогенерации схемы необходимо выполнять условие [(l+R4)/(R3+Ri)]<3, гдеR, — внутреннее сопротивление источника сигнала. Резонансная частота фильтра определяется выражением f0= 1/2п(R1R2ClC2)-2. С помощью потенциометров R1 и R2 возможно изменение центральной частоты в пределах от 160 Гц до 1,6 кГц.
Полосовой фильтр второго порядка. Полосовой фильтр (рис. 5.39, а) имеет центральную частоту, определяемую выражением
где Rl =R3 = R и С1 = С2 = С. В этом фильтре ослабление сигнала в области нижних частот осуществляется конденсатором С1, а конденсатор С2, включенный в цепь ООС ОУ, ослабляет верхние частоты. АЧХ фильтра слабо зависят от сопротивлений резисторов R4, R5. Заметное сужение полосы пропускания фильтра наблюдается при сопротивлении R5 — — 2 — 3 кОм. При R5=1,5 кОм схема возбуждается. На рис. 5.39, бил проиллюстрированы АЧХ фильтра для ряда значений элементов схемы.
Pис. 5.38 Рис. 5.39
Мостовой фильтр. Центральную частоту фильтра (рис. 5.40, а) можно рассчитать по формуле
где LI = C2 = C. Полоса пропускания определяется Дf=1/пСR3, когда R1 = R2. При изменении сопротивления резистора R2 смещается как центральная частота, так и полоса пропускания. Эта зависимость показана на рис. 5.40, б. Коэффициент передачи на центральной частоте определяется формулой K — R3/(R1+R2).
Селективный фильтр на инверторе проводимости. Фильтр построен на инверторе проводимости, который собран на ОУ (рис. 5.41). Частотная характеристика фильтра определяется цепочками Ri, Ci и Rz, Cz. Центральная частота фильтра может быть найдена из выражения f0 = 2п/R1Cl при R1 = R5, C1 = C2. Коэффициент передачи на резонансной частоте равен К.о = n/(2—n), где n= (R2+аR3)/[R4+(1 — а)R3]. Добротность фильтра определяется выражением Q=l/(2 — n). Для указанных на схеме номиналов элементов центральная частота равна 1 кГц. Добротность фильтра можно регулировать с помощью резистора R3. Фильтр устойчиво работает при Q=100.
Рис. 5.40 Рис. 5.41
Рис. 5.42
Фильтр с регулируемой частотой и добротностью. Фильтр построен на двух микросхемах (рис. 5.42), причем DA2 с прилегающими к ней элементами работает в качестве эквивалентной индуктивности.
Средняя частота фильтра определяется по формуле
[Гц), а ширина полосы пропускания по формуле
Для тех номиналов элементов, которые указаны на схеме, средняя частота может регулироваться с помощью резистора R2 в пределах от 1 до 10 кГц. Добротность фильтра регулируется резистором R1. Она может меняться в пределах от 2 до 200. Коэффициент передачи для средних частот от 1 до 10 кГц не меняется и равен единице. Максимальная амплитуда входного сигнала 0,5 В. Для получения фильтра на другие средние частоты следует подходить к выбору номиналов элементов схемы с учетом того, что сопротивление резистора R1 должно быть менее 400 кОм, сопротивления резистора R2 — между 1 и 40 кОм. Значение R4С3/R3С2 должно лежать в пределах от нуля до (R2/R1) 10-2. Постоянные времени R4C3 и R3C2 можно отрегулировать, если резистор R4 сделать переменным. Фильтр настраивается при разомкнутом входе, что соответствует максимальной добротности. Увеличением сопротивления резистора R4 добиться самовозбуждения схемы. После этого можно уменьшить сопротивление резистора R4 или параллельно ему подключить резистор с сопротивлением больше 100 кОм. Автоколебания при этом прекращаются.
Глава 6
МОДУЛЯТОРЫ ПОСТОЯННОГО ТОКА
Модуляторы постоянного тока применяются в различных исследованиях для измерения малых величин постоянного или переменного тока и в коммутаторах аналогового сигнала при сборе и обработке информации в многоканальных системах. Для измерения постоянного тока модуляторы подключают ко входу усилителя леременного сигнала. В качестве модуляторов применяют реле, вибропреобразователи, диодные и транзисторные переключатели. Лучшими характеристиками обладают транзисторные модуляторы. Эти модуляторы выполняют как на биполярных так и на полевых транзисторах.
Модуляторы на биполярных транзисторах используют в тех случаях, когда требуется гальваническая развязка между датчиком и управляющим сигналом. Если же сопротивление источника сигнала более 500 кОм, то следует применять полевые транзисторы.
Основным недостатком модулятора является то, что при отсутствии входного сигнала на его выходах присутствует постоянное напряжение, возникающее за счет токов утечки и импульсных сигналов, связанных с паразитными межэлектродными емкостями активных элементов. С этой точки зрения полевые транзисторы предпочтительнее, так как емкость затвор — канал у них значительно меньше межэлектродной емкости биполярных транзисторов. В открытом состоянии полевой транзистор представляет собой сопротивление. Биполярные транзисторы в открытом состоянии имеют остаточное напряжение. Например, интегральная микросхема К101КТ1 имеет остаточное напряжение 50 мкВ. Остаточное напряжение зависит от управляющего тока. При работе на модуляторах, собранных на биполярных транзисторах с низкоомным источником сигнала, уровень импульсных помех составляет 10 — 20 мкВ, а температурный дрейф 0,2 — 0,5 мкВ/град.
Значительное влияние на работу модулятора оказывают помехи, проникающие на вход усилителя переменного сигнала из цепей управления через паразитные емкости. Эти помехи могут иметь амплитуду до 70 мВ. Чтобы помехи не насыщали усилитель, необходимо применить схему компенсации.
Значительная часть существующих работ по модуляторам посвящена этому вопросу. Рассматриваются различные варианты уменьшения импульсных помех, а также влияние их на точность преобразования постоянного сигнала в переменный.
Таблица 6.1
Тип микросхемы | Emax, B | Eост, мВ | I0. нА | Rотк. Ом | tвкл. мкс |
К101КТ1 | 0,1 | ||||
К124УТ1 | ±30 | 0,1 — 0,3 | — | ||
К162КТ1 | ±30 | 0,1 — 0,3 | — | ||
К168КТ1.2 | — | 0,1 | 1,5 | ||
К190КТ1 | ±20 | 10-4 | |||
К190КТ2 | ±20 | 10-4 | |||
К701МЛЗЗ | ±10 | 0.02 | 1,5 | ||
К701МЛ36 | ±30 | 0,2 | |||
К701МЛ37 | ±30 | 0,2 | 1,5 | ||
К284КН1А | — 8, +10 | — | 2,0 | ||
К284КН1Б | ±10 | — | 2,0 |
Примечание: Emаx — максимальное напряжение переключаемого сигнала; Eост — остаточное напряжение; I0 — ток утечки; Rотк — сопротивление открытого ключа; tвил — время включения.
В табл. 6.1 приводятся параметры интегральных микросхем, которые применяют для переключения аналоговых сигналов.