Микросхемы и схемы их включения
В настоящее время операционные усилители (ОУ) получили наиболее широкое распространение среди аналоговых интегральных схем. Это обусловлено возможностью реализации на их основе самых различных линейных и нелинейных аналоговых и аналого-цифровых устройств. Различные способы преобразования аналоговых сигналов выдвигают самые разнообразные требования к ОУ. Удовлетворить все эти требования в ОУ одного типа практически невозможно. По этой причине промышленностью выпускаются ОУ нескольких типов, каждый из которых удовлетворяет ограниченному числу .требований. Все вместе они перекрывают широкий диапазон требований.
Операционные усилители строятся на основе трех- или двухкас-кадных структурных схем. Трехкаскадная схема содержит каскады входного дифференциального усилителя, усилителя напряжения и усилителя амплитуды сигнала, объединяющего схемы сдвига уровня и формирования выходного сигнала. Выходные эмиттерные повтори-тели, осуществляющие переход к низкоомной нагрузке, в формировании коэффициента усиления- ОУ не участвуют. В двухкаскадных ОУ входной каскад объединяет функции дифференциального усилителя и усилителя напряжения.
Большое количество различных типов ОУ, выпускаемых серийно, можно разбить на две большие группы по их элементной базе. Первая из этих групп, в которую входят в основном ОУ первого поколения, характеризуется использованием главным образом транзисторов типа n-р-n и большого количества резисторов, в то время как интегральные ОУ второй группы отличаются применением комплементарных структур (совокупностью транзисторов типов n-р-n и р-n-р) и резким уменьшением количества резисторов. К первой группе относятся трехкаскадные ОУ типа К153УД1, а ко второй — двух-каскадные типа К140УД7. Параметры ОУ второй группы значительно лучше. Так, у ОУ типа К140УД7 более широкий диапазон изменения входного дифференциального напряжения, простая схема компенсации смещения, встроенный МОП-конденсатор емкостью около 30 пФ, обеспечивающий устойчивость ОУ для любой конфигурации и параметров цепи обратной связи (ОС). Кроме того, предусмотрена защита ОУ от коротких замыканий по выходу.
Возможности использования современных ОУ можно расширить еще больше, если создать условия для изменения некоторых из его параметров под воздействием внешних управляющих сигналов. Операционные усилители такого типа обычно называют программируемыми. Программируемым ОУ является микросхема К.140УД12.
Основные метрологические характеристики ОУ определяются параметрами его входного дифференциального каскада. Простейшая схема этого каскада представлена на рис. 1.1. Вольт-амперную характеристику эмиттерного диода транзистора с достаточной степенью точности можно описать выражением вида
Iэ=Iэвоexp UБЭ/Фт. (1)
где фт — температурный потенциал (для Т=300 К фт = 26 мВ); IЭБО — обратный ток эмиттера; UБЭ — управляющее переходом база — эмиттер напряжение. Это выражение справедливо при UБЭ >фт. По формуле (1) можно вычислить практически все входные параметры дифференциального каскада. Так, входное дифференциальное сопротивление ОУ равно Rвх.д = 2h11Б, а коэффициент усиления напряжения
Ky.u = UK1/UD = UK2/UD, где UD = Ul—U2. (2)
Таким образом, коэффициент усиления напряжения практически ра-. вен половине коэффициента усиления каскада с общим эмиттером (ОЭ), т.е. выражение (2) можно привести к виду Kи.и = h21ЕRк/2h11Е. Сюда входит входное сопротивление h11В каскада с общим эмиттером, которое зависит от эмиттерного тока транзистора или от номинала источника тока дифференциального каскада I0. Если коэффициент передачи тока транзистора h21Е>1, то h21Е=h21Ефт/Iэ = 2h21Ефт/I0. Тогда получим Rвх.д = 4h21Ефт/Iо иKу.и=RкIо/4фт.Эти выражения показывают, что регулировкой источника тока I0 входного дифференциального каскада можно изменять такие параметры ОУ, как коэффициент усиления напряжения и -входное дифференциальное сопротивление.
На рис. 1.2 представлены графические зависимости Rвх.д=f(Iо) и Kум=f(I0) для h21Е=100 и Rк=3,5 кОм. Однако эмиттерный ток входного каскада I0 влияет не только на эти параметры, но и на такие не менее важные характеристики, как входной ток ОУ, скорость .нарастания выходного напряжения я потребляемая мощность.
Широко распространенной разновидностью ,ОУ являются так называемые ОУ с переменной крутизной, наиболее характерным параметром которых является управляемая проводимость. Выходной каскад усилителя такого типа практически представляет собой источник тока. Программируемый источник тока, который используется для питания входного дифференциального каскада и управления параметрами ОУ, реализован по схеме «токового зеркала».
Рис. 1.1 Рис. 1.2
Вместо коллекторных резисторов применяют аналогичную схему. Принципиальная схема усилителя с переменной крутизной представлена на рис, 1.3. Для данной схемы справедливы следующие соотношения:
Для суммарного тока дифференциального каскада можно получить
Передаточная проводимость при этом- равна
Схема токового зеркала, используемая для питания дифференциального каскада и реализованная на транзисторах VT3 и VT4, описывается следующим соотношением: S = I0/I3 = h21E/(h21E+2). Если коэффициент передачи тока транзисторов VT3 и VT4 уменьшается до 20, что вполне реально для малых коллекторных токов, то отношение 5 равно 0,9 вместо 1, т. е. появляется погрешность передачи токов. Для уменьшения этой погрешности обычно применяют более сложные схемы токового зеркала, позволяющие получить значительно меньшую погрешность при равном коэффициенте передачи тока используемых транзисторов. Так, схема, реализованная на транзисторах VT13 — VT15, обеспечивает коэффициент усиления K=0,9 при коэффициенте передачи по току h21Е = 4 и описывается выражением
Если к высокоомному выходному каскаду с переменной крутизной подключить буферный эмиттерный повторитель, то в результате получится регулируемый ОУ.
Рис. 1.3
Рис. 1.4
Примером программируемого ОУ является интегральная микросхема К140УД12. Упрощенная схема этого ОУ приведена на рис. 1.4. Управление входными параметрами ОУ осуществляется регулировкой рабочего тока. Входной каскад ОУ построен по каскодной схеме на комплементарных транзисторах, причем транзисторы типа n-р-n имеют большой коэффициент передачи тока, а у транзисторов типа р-n-р он может изменяться. Тем самым обеспечивается полная симметрия входного каскада. Так как эмиттерные токи транзисторов VT1 и VT2 определяются их базовыми токами, то входное сопротивление ОУ и коэффициент усиления входного каскада также зависят от эмиттерных токов VT1 и VT2, а следовательно, могут регулироваться изменением рабочего тока по входам Si, 52. Входное сопротивление такого ОУ примерно в .2 раза больше, чём у ОУ с простейшим дифференциальным каскадом, вследствие использования каскодной схемы. Кроме высокого входного сопротивления кас-кодный усилитель обладает лучшими частотными характеристиками, ,в частности, за счет уменьшения коэффициента пересчета емкостей переходов коллектор — база транзисторов VT1 и VT2 ко входу по сравнению со схемой с общим эмиттером. Эмиттерный повторитель на транзисторе VT7 и схема сдвига уровня на транзисторах VT4 и VT6 предназначены для согласования входного дифференциального каскада и выходного буферного усилителя. Транзисторы VT21 и VT22 устраняют искажения, возникающие в выходном каскаде, построенном на комплементарных транзисторах и работающем в режиме АВ. Транзисторы VT23 и VT24 служат для защиты выходного каскада от короткого замыкания.
Для формирования управляющего тока I8 могут использоваться самые различные способы. Чаще всего для этой цели применяют достаточно высокоомный резистор, который подключают к отрицательному полюсу источника питания ипри необходимости заменяют источником тока на биполярном или полевом транзисторе.
Помимо коэффициента усиления и входного сопротивления при изменении тока I5 можно регулировать входной ток, токовые шумы и напряжение шумов (ОУ). При заданном внутреннем сопротивлении источника сигнала с помощью регулировки управляющего тока I можно оптимальным образом согласовать шумовые параметры ОУ с характеристиками источника сигнала. При использовании ОУ при минимальном напряжений питания изменением тока управления устанавливается минимальная мощность потребления в режиме покоя.
Таблица 1.1
Тип ОУ | Uп.в | Iпот. МА, | Kу. uminx х103 | Uсм. мВ | Iвх. нА | ДIвх. нА | Rвх, МОм | Uвх. сф, В | Uвых, В | Kос.сф, дБ | Kвл,пмкВ/В | ft. МГц | Uuвых,В/мкс | TK Uсм. мкВ/К | TK Iвх, нА/к; | TK ДIвх, нА/К | Uп.mах Uп.min |
К140УД1А (Б) | ±6,3 | 4,2 | 0,4 | 8-103 | 3-103 | 0,004 | ±3 | ±2,8 | |||||||||
±12,6) | (8) | 0,3) | (12- 103) | (±6) | (±5,7) | ||||||||||||
К140УД2А (Б) | ±6.3 | 0,3 | ±6 | ±10 | — | — | — | — | — | — | |||||||
±12,6) | (5) | (3) | (7) | (±3) | (±3) | ||||||||||||
К140УД5А (Б) | ±12,6 | 1.5 | 103 | 3-102 | — | — | — | — | — | 13(6) | |||||||
(16) | (2,5) | (5) | (5-103) | (103) | (60) | (И) | (6) | (6) | (25) | ||||||||
К140УД6А (Б) | ±15 | 2,8 | ±11 | ±11 | -200 | 1,0 | 2,5 | 0,1 | 20(5) | ||||||||
(50) | (8) | (50) | (15) | (2) | (70) | (2) | (40) | (25) | (0,3) | ||||||||
К140УД7А (Б) | ±15 | 2,8 | 0,4 | ±12 | ±11,5 | 0,8 | 0,3 | — | 20(5) | ||||||||
(3,5) | (10) | (550) | (200) | (±10,5) | |||||||||||||
К140УД8А (Б) | ±15 | 0,1(0,5) | 0,1 | 102 | ±10 | ±10 | — | 1,0 | 2,5 | — | — | — | |||||
(5) | (20) | (100) | (10О) | ||||||||||||||
К140УД9 | ±15 | 3,6 | — | — | — | — | 1,0 | 0,2 | — | 18(9) | |||||||
К140УД10 | ±15 | ±11,5 | ±10 | — | — | 18(5) | |||||||||||
К140УД11 | ±15- | — | — | — | — | — | — | 18(5) | |||||||||
К140УД12 | ±15 | 0,03 | — | — | — | — | 0,3 | 0,1 | — | — | — | t8(5) | |||||
(IУ — 1,5/1 5 мА) | (0,2) | (100) | (5) | (50) | (15) | (1) | (0,8) | ||||||||||
К140УД13 | ±15 | 0,007 | 0,5 | 3 - | 0,3 | ±10 | ±0,5 | — | — | 0,5 | — | 0,003 | — | ||||
К НОУ ДНА (Б) | ±15 | 0,6 | 2(7,5) | 0.2 | — | ±13 | — | 0,3 | 0,05 | 0,02 | 2,5 | 18(5) | |||||
(0,8) | (25) | (7) | (1) | (10) | (0,2) | (30) | (10) | ||||||||||
К153УД1А (Б) | ±15 | 7,5 | 0,2 | ±8 | ±10 | — | 1,0 | 0,2 | 0,8 | 18(9) | |||||||
К553УД1 | ±15 | 7,5 | 0,2 | ±8 | ± 9 | — | 1,0 | 0.2 | 0,8 | 18(9) | |||||||
К153УД2 | ±15 | 0,3 | ±12 | ±11 | — | 1,0 | 0,6 | — | — | 18(5) | |||||||
К553УД2 | ±15 | 7,5 | 0,3 | ±12 | ±10 | — | 1,0 | 0,6 | — | — | 18(5) | ||||||
К153УДЗ | |||||||||||||||||
К553УДЗ | ±15 | 3,6 | 0,3 | ±8 | ±10 | — | 1,0 | 0,2 | — | — | 18(9) | ||||||
К153УД4 | ± 6 | 0,8 | 0,2 | ±5 | ± 4 | — | 1,0 | 0,1 | — | 7(3) | |||||||
К153УД5 | ±15 | __ | 2,5 | 1,0 | ±13,5 | ±10 | — | 1,0 | — | — | 0,5 | 16(5) | |||||
К154УД1 К154УД2 К154УДЗ | ±15 ±15 ±15 | 0,12 6 | 150 90 8 | 3 2 9 | 20 100 200 | 10 20 30 | ±10 ±10 ±10 | ±12 ±10 ±10 | 85 85 80 | 100 85 75 | 1,0 15 15 | 10 150 80 | 15 5 10 | — | 0,15 0,3 0,05 | 18(5) 18(5) 18(5) | |
К157УД1 | ±15 | — | — | ±12 | — | 0,5 | 0,5 | — | 18(3) | ||||||||
К157УД2 | ±15 | — | — | ±13 | — | 1 ,0 | 0,5 | — | 18(3) | ||||||||
К544УД1А (Б) | ±15 | 3,5 | 50 (20) | 30 (50) | 0,15 (1) | 0,05 (0 5) | — | ±13,5 | ±10 | — | 1,0 | 30 (10О) | — | — | — | ||
К544УД2 К574УД1А | ±15 ±15 | 5,5 5,5 | 150 150 | 60 20 | 0,6 0,1 | 0,02 0,02 | 10 10 . | ±10 ±12 | ±13 ±12 | 60 80 | 18 18 | 0,1 | 0,006 | ||||
К574УД1Б К574УД1В | ±15 ±15 | 5.5 5,5 | 150 150 | 20 60 | 0,1 0,6 | 0,02 0,02 | 10 10 | ±12 ±12 | ±12 ±12 | 60 60 | 100 100 | 18 18 | 90 90 | 30 30 | — | — | — |
Примечание: Un — напряжение питания; Iпот — потребляемый ток; Kу и min — минимальный коэффициент усиления; Uсм — напряжение смещения; Iвх — входной ток; ДIвх — разность входных токов; Rвx — входное сопротивление; Uвх cф — максимальное входное синфазное напряжение; Uвых — выходное напряжение; Кос.сф — коэффициент ослабления входного синфазного напряжения; fi — граничная полоса частот; vuвых. — скорость нарастания выходного напряжения; ТК Uca — температурный коэффициент смещения: ТК Iвт — температурный коэффициент входного тока; ТК ДIвх — температурный коэффициент разности входных токов; Un.max/Un.min — пределы изменения питающего напряжения; Kвл. п — коэффициент подавления изменения питающего напряжения.
Основным недостатком программируемого ОУ К140УД12 является относительно невысокая скорость нарастания выходного сигнала, обусловленная применением внутренней цепи коррекции ампли-тудно-частотной характеристики и равная примерно 0,5 В/мкс. Скорость нарастания определяет в данном случае и граничную частоту пропускания ОУ для режима большого сигнала. Для синусоидального напряжения справедливо следующее выражение: wAmах< vu вых, где vUвых — скорость нарастания. Это соотношение определяет условия неискаженной передачи синусоидального сигнала заданной амплитуды Amах и частоты w.
Параметры ОУ. Широкое применение ОУ выдвигает самые разнообразные требования к его характеристикам. Их параметры приведены в табл. 1.1, рассмотрим некоторые из них.
Коэффициент усиления Kу.и определяется отношением изменения выходного напряжения к изменению на входе Kу.и = АUвых/ДUвх. Величина ДUВх = U+ — U-, где U_ — напряжение на инвертирующем, a U+ — на неннвертирующем входах ОУ. В современных ОУ коэффициент Kу.u = 103 — 106.
Напряжение смещения UСм определяется как дифференциальное напряжение, которое необходимо подать на вход ОУ, чтобы на его выходе установился нулевой потенциал. Напряжение Uсм для ОУ с биполярными транзисторами на входе, может лежать в пределах 3 — 10 мВ. Для ОУ с полевыми транзисторами на входе напряжение смещения составляет 30 — 100 мВ. Это объясняется в основном большим разбросом напряжения затвор — исток применяемых полевых транзисторов.
Входной ток Iвх определяется среднеарифметическими значениями токоз на инвертирующем и неннвертирующем входах ОУ, когда входное напряжение создает на выходе нулевое напряжение. Этот ток для ОУ с биполярными транзисторами на входе лежит з пределах 0,02 — 10 мкА. Для входных каскадов с полевыми транзисторами входные токи равны единицам нанзампер и меньше.
Разность входных токов ДIВх=|I+ — I-| измеряется при нулевом выходном напряжении. Эта величина лежит в пределах 20 — 50 % Iвх. Параметр ДIвх характеризует асимметрию входного каскада.
Коэффициент ослабления синфазного входного напряжения Ксс.сф = 20 log Kу.u/Kу.сф — отношение коэффициента усиления напряжения к коэффициенту усиления синфазного входного напряжения ОУ. Значение Kос.сф лежит в пределах 60 — 100 дБ.
Частота единичного усиления f1 — частота, на которой коэффициент усиления ОУ равен единице. Максимальное значение f1 для ОУ может доходить до нескольких десятков мегагерц.
Скорость нарастания выходного напряжения vUвых определяется при подаче на вход максимально допустимого импульсного сигнала прямоугольном формы с минимальным фронтом или спадом. Для ОУ, поставленного в режим повторителя,.этот параметр лежит в диапазоне 0,3 — 50 В/мкс. Для некоторых типов ОУ лараметр РУВЫХ зависит от полярности входного прямоугольного сигнала.
Коэффициент влияния нестабильности источника питания Kвл.ип для ОУ характеризуется сбалансированностью всех ступеней передачи входного напряжения. Значительный вклад в эту характеристику вносит входной каскад. При изменении положительного или отрицательного напряжения питания на вьТЧоде ОУ возникает напряжение. Отношение приведенного ко входу изменения выходного напряжения к вызывающему его изменению напряжения питания определяет Kвл.ип. Типовое значение Kвл.ип находится в пределах 20 — 200 мкВ/В.
МИКРОСХЕМЫ СЕРИИ К140
Микросхема К140УД1.Операционный усилитель К140УД1 (рис. 1.5) является наиболее простым из всех существующих подобных устройств. Первый каскад состоит из дифференциальной транзисторной пары VT1, VT2, которая питается от генератора тока на транзисторе VT3. Температурная стабилизация тока осуществляется транзистором VT4. Второй каскад на транзисторах VT5 и VT6 гальванически связан с выходами первого. На выходе усилителя стоят два эмиттерных повторителя (VT7 и VT9), а транзистор VT8 осуществляет сдвиг уровня постоянного напряжения на выходе. Операционный усилитель требует внешних корректирующих цепей, устраняющих самовозбуждение на частотах. 2 — 10 МГц. Из всех существующих интегральных микросхем ОУ К140УД1 имеют относительно низкий уровень шума.
Операционные усилители этой серии выпускаются двух типов, рассчитанных на различные питающие напряжения: К140УД1А — на 6,3 В (Pпот = 45 мВт) и К140УД1Б — на 12,6 В (Рпот = -170 мВт).
Подключение корректирующих элементов осуществляется между контактами 1 и 12. Выбор номиналов корректирующих элементов зависит от реализуемого усиления, при этом ОУ обладает различной полосой пропускания (рис. 1.6). Минимальной нагрузкой усилителя является Ra mtn = 5 кОм и Си тах = 50. пФ. Фазовая характеристика каскада с граничной частотой 500 кГц показана на рис. 1.7. В зависимости от амплитуды входного сигнала наблюдается изменение полосы частот. Эти изменения проиллюстрированы на рис. 1.8 для двух значений Uах. Важным параметром ОУ является зависимость входного тока от температуры (рис. 1.9). Разность входных токов зависит от температуры по аналогичному закону (рнс. 1.10). Входное сопротивление микросхемы также является функцией температуры (рис. 1.11). Важным параметром служит нагрузочная способность ОУ, которая проиллюстрирована в виде зависимости UBЫХ = = f(Uвx) для четырех значений Rн (рис. 1.12). При сопротивлении нагрузки более 5 кОм выходные характеристики усилителя меняются незначительно. Последней приведенной зависимостью является изменение напряжения шума от полосы пропускания (рис. 1.33).
Рассмотрим наиболее характерные схемы включения К140УД1 Операционный усилитель можно применять в схеме инвертирующего усилителя (рис. 1.14). Коэффициент усиления усилителя равен Kу.м = R2/R1 при RВх = R1. Неинвертирующий усилитель (рис. 1.15) имеет Kу.и = 1+ (R2/R1) и Rвх=R3. Разновидность схемы неинвертирующего усилителя показана на рис. 1.16. В этой схеме корректирующий конденсатор включен между контактами 9 к 12. Данная коррекция позволяет в три раза расширить полосу частот усилителя. В двух следующих схемах, являющихся усилителями переменного напряжения, некоторые резисторы заменяются на конденсаторы (рис. 1.17 и 1.18). На рис. 1.17 изображен усилитель с коэффициентом усиления напряжения Kу.и = 40 дБ и fн= l/2пR1С1 = 16 Гц, а на рис. 1.18 усилитель имеет Kу.и = 70 дБ и fH==l кГц. Коэффициент усиления напряжения следующего усилителя (рис. 1.19) можно регулировать, меняя соотношение между сигналами, которые поступают на его входы. При равенстве сигналов на входах усилителя выходной сигнал равен нулю.
Рис. 1.5 Рис. 1.6 Рис. 1.7
Рис. 1.8 Рис. 1.9 Рис. 1.10
Рис. 1.11 Рис. 1.12 Рис. 1.13
Рис. 1.14 Рис. 1.15 Рис. 1.16
Рис. 1.18 Рис. 1.17 Рис. 1.19
Рис. 1.20 Рис. 1.21
Меняя сопротивление резистора R4, . можно регулировать коэффициент усиления. При изменении сопротивления резистора R4 от нуля до максимального значения коэффициент усиления меняется от нуля до R2/R1, так как Kу.u =-R2lR1. Входное сопротивление усилителя равно RBХ=R1/2 при R1 = Rз и R2 = R4. На рис. 1.2.0 показан способ включения интегральной микросхемы, при котором ОС подается с части сопротивления нагрузки. При этом
Ky.U = -[(R2/Rl)+(R3/R4) + (R2R3/R1R4)],
а входное сопротивление равно Rz-a — Rs.
Балансировка усилителя для получения нулевого выходного напряжения может быть произведена с помощью потенциометра, включенного между контактами 7 и 12, как показано на рис. 1.21. Если вместо потенциометра применить терморезистор, то создается возможность стабилизации усилителя в широком диапазоне температур.
Микросхема К140УД2. Операционный усилитель КНОУД2 является усовершенствованием усилителя К140УД1 (рис.- 1.22). Схема ОУ состоит из пяти гальванически соединенных каскадов. Первые два каскада представляют собой дифференциальные усилители с эмиттерными повторителями на входах. Для компенсации температурного изменения входных токов в них применены транзисторы VT5 и- VT12 в диодном включении. Третий каскад на транзисторах VT14 и VTJ5 является схемой сдвига уровня постоянного напряжения. Транзистор VT17 в эмиттерной цепи транзистора VT15 представляет собой термостабилизированный коллекторным переходом транзистора VT16 генератор тока. Емкость диодов вместе с резисторами в эмиттерах транзисторов VT14 и VT15 образуют цепи, компенсирующие фазовый сдвиг сигнала на емкости коллекторного перехода транзистора VT17. Каскад на транзисторе VT18 является усилителем с общим эмиттером (ОЭ).
Рис. 1.22 Рис. 1.23
Рис. 1.25 Рис. 1.24 Рис. 1.26
Выходной каскад состоит из транзисторов VT19 — VT22 и работает в режиме В. При поступлении на базу транзистора VTJ8 отрицательной полуволны сигнала напряжение, выделенное на его коллекторном резисторе, открывает транзисторы VT23, VT24 и ток транзистора VT24 протекает через нагрузку и через транзистор VT20 в диодном включении. Напряжение на транзисторе VT20 увеличивает ток транзистора VTJ9, что приводит к уменьшению напряжения нз базе транзистора VT21. Транзисторы VT21 и VT22 закрываются и не влияют на прохождение сигнала. При поступлении на базу транзистора VT18 положительной полуволны сигнала транзисторы VT21 и VT22 открываются, а транзисторы VT23 и VT24 закрываются.
Схемы включения микросхемы показаны на рис. 1.23, 1.24. На рис. 1.23 изображен повторитель сигналов, а усилитель, изображенный на рис. 1.24, имеет максимальный коэффициент усиления. Для балансировки усилителя можно воспользоваться любой из схем, показанных на рис. 1.25, 1.26.
Микросхема К140УД5. Операционный усилитель К.140УД5 (рис. 1.27) по своим характеристикам занимает промежуточное положение между аналогичными по назначению усилителями К140УД1 и К140УД2. Наличие высокоомного входа приближает его к интегральной микросхеме К140УД2, а по коэффициенту усиления, корректирующим цепям и частотным свойствам он близок к усилителю КНОУД1. Выводы с промежуточных точек схемы расширяют его возможности. Интегральная микросхема имеет дифференциальный выход со второго каскада, что позволяет соединять последовательно два и большее число каскадов. Кроме того, дополнительные выводы расширяют возможности балансировки интегральной микросхемы.
Рис. 1.27
Частотные характеристики микросхемы для различных коэффициентов усиления показаны на рис. 1.28. Амплитуда неискаженного выходного сигнала, как показано на рис. 1.29, нелинейно зависит от сопротивления нагрузки. При этом графики зависимости выходного напряжения положительной и отрицательной полярностей имеют различный наклон в зависимости от питающего напряжения (рис. 1.30). От питающего напряжения зависит и коэффициент .усиления, причем для разных входов получаются разные зависимости, как показано на рис. 1.31. Изменения входного тока, разности входных токов и смещения входного напряжения от питающего напряжения показаны на рис. 1.32 — 1.34.
Для стабилизации ОУ при различных температурах необходимо учитывать изменения входного тока. Зависимость входного тока от температуры показана на рис. 1.35. Разность входных токов меняется от температуры по аналогичному закону, а абсолютные значения разности в 10 раз меньше входных токов.
Схема включения ОУ показана на рис. 1.36. Относительные амплитудно-частотные характеристики микросхемы при различных схемах включения показаны на рис. 1.37 при входном сигнале 1 мВ.
Для балансировки усилителя можно применить три схемы. Схема рис. 1:38 смещает рабочую точку усилителя преимущественно в сторону положительных напряжений, а схема рис. 1.39 — в сторону отрицательных напряжений. На рис. 1.40 балансировка осуществляется в сторону любой полярности выходного напряжения. Диапазон регулировки в этой схеме значительно меньше, чём в двух предыдущих.
Рис. 1.28 Рис. 1.29 Рис. 1.30
Рис. 1.31 Рис. 1.32 Рис. 1.33
Рис. 1.34 Рис. 1.35 Рис. 1.36 Рис. 1.38
Рис. 1.37 Рис. 1.39 Рис. 1.40
Рис. 1.41 Рис. 1.42
Рис. 1.43 Рис. 1.44 Рис. 1.45 Рис. 1.46
Рис. 1.47
Микросхема К140УД6. Операционный усилитель (рис. 1.41) имеет внутреннюю частотную коррекцию. На входе использован составной эмиттерный повторитель на транзисторах VT2 VT3 и VT9 VT10. В эмиттеры транзисторов VT2 и VT9 включены генераторы-тока на транзисторах VT6, и VT12. Коллекторный ток этих транзисторов определяется напряжением в базах, которое снимается с делителя на транзисторах VT13 и VT14 с соответствующими, резисторами. Нагрузкой эмиттерных повторителей VT3 и VT10 являются генераторы токов на транзисторах VT5 и VT11. Ток этих транзисторов задается транзистором VT4. Ток транзисторов VT5 и VT11 можно менять внешним резистором, который подключается к выводам 1 и 5.
Выходной сигнал с эмиттера транзистора VT10 подается на усилительный каскад, который обеспечивает общий коэффициент усиления интегральной микросхемы. Нагрузкой транзистора VT10 является генератор тока на транзисторе VT17. Сигнал с эмиттера транзистора VT15 подается в базу усилительного транзистора VT20, в коллектор которого включен транзистор VT18, работающий вдинамическом режиме. Противофазные сигналы, снимаемые с коллекторов транзисторов VT17 и VT20, подаются на составной выходной эмиттерный повторитель (транзисторы VT24 и VT27). Для защиты интегральной микросхемы от перегрузок включены транзисторы VT21. VT22, VT25, VT26.
Операционные усилители К140УД6 выпускают двух типов: К140УД6А и К140УД6Б. Каждый тип имеет свою зависимость выходного сигнала от сопротивления нагрузки (рис. 1.42). Относительные изменения напряжения смещения от температуры показаны на рис. 1.43. Зависимость от температуры входных токов показана на рис. 1.44, а разности входных токов — на рис. 1.45. Зависимость общего коэффициента усиления от питающего напряжения приведена на рис. 1.46. Для балансировки ОУ можно использовать схему включения, приведенную на рис. 1.47.
Микросхема К140УД7.Схема ОУ приведена на рис. 1.48. Входной сигнал подается в базы транзисторов VT2 и VT3. В эмиттерах этих транзисторов включены динамические нагрузки, выполненные на транзисторах VT4 и VT5 проводимости типа р-n-р. Базовый потенциал транзисторов VT4, VT5, а следовательно, и потенциалы эмиттеров транзисторов VT2 и VT3 определяются делителем на транзисторах VT9 и VT10, смещение на которые обеспечивается транзисторами VT1 и VT12 в диодном включении.
Разностный сигнал при подаче входного сигнала на выводы 2 и 3 выделяется на коллекторном выводе транзистора VT5. Нагрузкой транзисторов VT4 и VT5 является схема «токовое зеркало», построенная на транзисторах VT6 — VT8. Постоянное напряжение на коллекторных выводах транзисторов VT5 и VT8 определяется то-ком через эти транзисторы. Этот ток можно регулировать подключением внешнего резистора к-контактам 1 и 5.
Сигнал с коллектора транзистора VT5 подается на усилительный каскад с большим. входным сопротивлением на транзисторах VT13 и VT16. Коллекторной нагрузкой транзистора VT16 является генератор тока на транзисторе VT15. Ток через транзистор VT15 задается через три токовых трансформатора, построенных по схеме «токовое зеркало» на транзисторах VT10 — VT12.
Рис. 1.48
С коллектора транзистора VT16 сигнал поступает на элшттерный повторитель (транзистор VT19), нагрузкой которого также является генератор тока. Транзисторы VT17 и VT18 служат для уменьшения порога открывания выходных транзисторов VT21 и VT24. Для защиты интегральной микросхемы от перегрузки включены транзисторы VT22 и VT23.
Описанная схема обладает удовлетворительными техническими характеристиками для редпения многих практических задач. На рис. 1.49 приведена зависимость напряжения шума на выходе ОУ от сопротивления генератора, а на .рис. 1.50 — спектральная плотность шумов как функция частоты. Частотная характеристика усилителя показана на рис. 1.51, а зависимость скорости нарастания выходного сигнала от питающего напряжения — на рис. 1.52. Зависимость коэффициента усиления усилителя от частоты приведена на рис. 1.53. Температурная зависимость входного сопротивления, входных токов и разности входных токов, напряжения смещения показаны на рис. 1.54, 1.55 и 1.56. Зависимость выходного напряжения ОУ от сопротивления нагрузки показана на рис. 1.55. При нагрузках более 2 кОм изменения выходного напряжения не наблюдается. Для Rн = 2 кОм амплитуд