Общие понятия о релейной защите

Содержание

1. Введение

2. Общие понятия о релейной защите

2.1. Требования, предъявляемые к релейной защите

2.2. Элементы защиты, реле и их разновидности

2.3. Источники оперативного тока

2.4. Общие принципы выполнения реле

3. Устройство релейной защиты и типы ее, используемые для защиты кабельных линий

3.1. Максимальная токовая защита.

3.2. Токовые отсечки

3.3. Защита от замыканий на землю

4. Литература

Введение

Служба релейной защиты, автоматики, электроизмерений и испытаний «РН-Юганскнефтегаз» обеспечивает организацию и проведение высоковольтных испытаний электрооборудования, работ по защите электрических сетей от перенапряжения, ремонт и техническое обслуживание систем связи, каналов электроавтоматики, устройств телемеханики.

Предметом деятельности предприятия является оказание услуг по ремонту и обслуживанию воздушных и кабельных линий

0,4 – 10 кВ, трансформаторных подстанций и распределительных пунктов, установок наружного освещения, архитектурно-художественной подсветки и реконструкции и технического перевооружения городских электрических сетей.

На балансе предприятия находятся 10 распределительных пунктов, 134 трансформаторные подстанции, содержащие 252 трансформатора установленной мощности 112 МВА. Общая протяженность ЛЭП, обслуживаемых ООО «РН-Юганскнефтегаз» составляет свыше 1500 км.

Требования, предъявляемые к релейной защите

1. Селективность.

Селективностью или избирательностью защиты называется способность защиты отключать при к. з. только поврежденный участок сети. Селективное отключение повреждения является основным условием для обеспечения надежного электроснабжения потребителей. Неселективное действие защиты приводит к развитию аварий. Неселективные отключения могут допускаться, но только в тех случаях, когда это диктуется необходимостью и не отражается на питании потребителей.

2. Быстрота действия.

Отключение к. з. должно производиться с возможно большей быстротой для ограничения размеров разрушения оборудования, повышения эффективности автоматического повторного включения линий и сборных шин, уменьшения продолжительности снижения напряжения у потребителей и сохранения устойчивости параллельной работы генераторов, электростанций и энергосистемы в целом. Последнее из перечисленных условий является главным.

В современных энергосистемах для сохранения устойчивости требуется весьма малое время отключения к. з. Так, например, на ЛЭП 300 – 500 кВ необходимо отключать повреждение за 0,1 – 0,12 с после его возникновения, а в сетях 110 – 220 кВ – за 0,15 – 0,3 с. В распределительных сетях 6 и 10 кВ, отделенных от источников питания большим сопротивлением, к. з. можно отключать со временем примерно 1,5 – 3 с, так как они не вызывают опасного понижения напряжения на генераторах и не влияют поэтому на устойчивость системы.

Полное время отключения повреждения складывается из времени работы защиты и времени действия выключателя , разрывающего ток к. з., т. е. . Наиболее распространенные выключатели действуют со временем 0,15 – 0,03 с. Чтобы обеспечить при таких выключателях указанное выше требование об отключении к. з., например, с t = 0,2 с, защита должна действовать с временем 0,05 – 0,12 с, а при необходимости отключения с t = 0,12 с и действии выключателя с 0,08 с время работы защиты не должно превышать 0,04 с. Защиты, действующие с временем до 0,1 – 0;2 с, считаются быстродействующими. Современные быстродействующие защиты могут работать с временем 0,02 – 0,04 с.

3. Чувствительность.

Для того чтобы защита реагировала на отклонения от нормального режима, которые возникают при к. з. (увеличение тока, снижение напряжения и т. п.), она должна обладать определенной чувствительностью в пределах установленной зоны ее действия. Каждая защита должна отключать повреждения на том участке, для защиты которого она установлена, и, кроме того, должна действовать при к. з. на следующем, втором участке, защищаемом следующей защитой. Резервирование следующего участка является важным требованием. Одновременный отказ защиты на двух участках маловероятен, и поэтому с таким случаем не считаются.

Каждая защита должна действовать не только при металлическом к. з., но и при замыканиях через переходное сопротивление, обусловливаемое электрической дугой. Чувствительность защиты должна быть такой, чтобы она могла подействовать при к. з. в минимальных режимах системы, т. е. в таких режимах, когда изменение величины, на которую реагирует защита (ток, напряжение и т. п.), будет наименьшей. Например, если на станции будет отключен один или несколько генераторов, то ток к. з. уменьшится, но чувствительность защит должна быть достаточной для действия и в этом минимальном режиме.

Чувствительность защиты принято характеризовать коэффициентом чувствительности . Для защит, реагирующих на ток к. з.,

где – минимальный ток к. з.; – наименьший ток, при котором защита начинает работать (ток срабатывания защиты).

4. Надежность.

Требование надежности состоит в том, что защита должна безотказно работать при к. з. в пределах установленной для нее зоны и не должна работать неправильно в режимах, при которых ее работа не предусматривается. Требование надежности является весьма важным. Отказ в работе или неправильное действие какой-либо защиты всегда приводит к дополнительным отключениям, а иногда к авариям системного значения.

Надежность защиты обеспечивается простотой схемы, уменьшением в ней количества реле и контактов, простотой конструкции и качеством изготовления реле и другой аппаратуры, качеством монтажных материалов, самого монтажа в контактных соединений, а также уходом за ней в процессе эксплуатации.

Источники оперативного тока

Оперативным током называется ток, питающий цепи дистанционного управления выключателями, оперативные цепи релейной защиты, автоматики, телемеханики и различные виды сигнализации.

Питание оперативных цепей и особенно тех ее элементов, от которых зависит отключение поврежденных линий и оборудования, должно отличаться особой надежностью. Поэтому главное требование, которому должен отвечать источник оперативного тока, состоит в том, чтобы во время к. з. и при ненормальных режимах в сети напряжение источника оперативного тока и его мощность имели достаточную величину как для действия вспомогательных реле защиты и автоматики, так и для надежного отключения и включения соответствующих выключателей.

Для питания оперативных цепей применяются источники постоянного и переменного тока.

Постоянный оперативный ток

В качестве источника постоянного тока используются аккумуляторные батареи с напряжением 110 – 220 В, а на небольших подстанциях 24 – 48 В, от которых осуществляется централизованное питание оперативных цепей всех присоединений. Для повышения надежности сеть постоянного тока секционируется на несколько участков, имеющих самостоятельное питание от сборных шин батареи.

Самым ответственным участком являются цепи защиты, автоматики и катушек отключения, питаемые от шинок управления ШУ. Вторым очень важным участком являются цепи катушек включения, питаемые от отдельных шинок ШВ вследствие больших токов (400—500 А), потребляемых катушками включения масляных выключателей. Третьим, менее ответственным участком является сигнализация, питающаяся от шинок ШC. Остальные потребители постоянного тока (аварийное освещение, двигатели собственных нужд) питаются по отдельной сети. Защита оперативных цепей от к. з. осуществляется предохранителями или специальными автоматами, реагирующими на увеличение тока.

Аккумуляторные батареи обеспечивают питание оперативных цепей в любой момент времени с необходимым уровнем напряжения и мощности независимо от состояния основной сети и поэтому являются самым надежным источником питания. В то же время аккумуляторные батареи значительно дороже других источников оперативного тока, для них требуются зарядные агрегаты, специальное помещение и квалифицированный уход. Кроме того, из-за централизации питания создается сложная, протяженная и дорогостоящая сеть постоянного тока.

Переменный оперативный ток

Для питания оперативных цепей переменным током используется ток или напряжение сети. В соответствии с этим в качестве источников переменного оперативного тока служат трансформаторы тока, трансформаторы напряжения и трансформаторы собственных нужд.

Трансформаторы тока являются весьма надежным источником питания оперативных цепей для защит от к. з. При к. з. ток и напряжение на зажимах трансформаторов тока увеличиваются, поэтому в момент срабатывания защиты мощность трансформаторов тока возрастает, что и обеспечивает надежное питание оперативных цепей.

Однако трансформаторы тока не обеспечивают необходимой мощности при повреждениях и ненормальных режимах, не сопровождающихся увеличением тока на защищаемом присоединении. Поэтому их нельзя использовать для питания защит от замыкания на землю в сети с изолированной нейтралью, защит от витковых замыканий в трансформаторах и генераторах или защит от таких ненормальных режимов, как повышение или понижение напряжения и понижение частоты.

Трансформаторы напряжения и трансформаторы собственных нужд непригодны для питания оперативных цепей защит от к. з., так как при к. з. напряжение в сети резко снижается и может в неблагоприятных случаях становиться равным нулю. В то же время при повреждениях и ненормальных режимах, не сопровождающихся глубокими понижениями напряжения в сети, трансформаторы напряжения и трансформаторы собственных нужд могут использоваться для питания таких защит, как, например, защиты от перегрузки, от замыканий на землю, повышения напряжения и т. д.

Питание цепей управления выключателей. Дистанционное управление выключателями и их автоматическое включение от АПВ или АВР должно производиться при любых нагрузках на присоединении и при отсутствии напряжении на шинах подстанции, чего не обеспечивают трансформаторы тока. Поэтому питание цепей дистанционного управления, АПВ и АВР производится от трансформаторов напряжения, трансформаторов собственных нужд и заряженных конденсаторов. Чтобы обеспечить производство операции по включению при отсутствии напряжения на шинах, трансформаторы, питающие цепи управления, подключаются к линиям, питающим подстанцию или на выключателях устанавливаются механические приводы, действующие а счет энергии поднятого груза или сжатой пружины.

Таким образом, каждый источник переменного оперативного тока имеет свою область применения. При этом возможность использования того или иного источника определяется мощностью, которую он может дать в момент производства операций. Мощность источника питания должна с некоторым запасом превосходить мощность, потребляемую оперативными цепями, основной составляющей которой является мощность, затрачиваемая приводом на отключение и включение выключателей.

Наибольшие затруднения из-за недостаточной мощности возникают при применении трансформаторов тока и трансформаторов напряжения. Учитывая, что включение и отключение выключателей является кратковременной операцией, можно допускать значительные перегрузки измерительных трансформаторов без ущерба для них.

Токовые отсечки.

Отсечка является разновидностью токовой защиты, позволяющей обеспечить быстрое отключение к. з. Токовые отсечки подразделяются на отсечки мгновенного действия и отсечки с выдержкой времени (около 0,3 – 0,6 с).

Селективность действия токовых отсечек достигается ограничением их зоны работы так, чтобы отсечка не действовала при к. з. на смежных участках сети, защита которых имеет выдержку времени, равную или больше, чем отсечка. Для этого ток срабатывания отсечки должен быть больше максимального тока к. з., проходящего через защиту при повреждении в конце участка, за пределами которого отсечка не должна работать точка М участка AM . Такой способ ограничения зоны действия основан на том, что ток к. з. зависит от величины сопротивления до места повреждения .

При удалении точки к. з. от источника питания или от места расположения защиты сопротивление растет, а ток к. з. соответственно уменьшается.

Если по условиям селективности отсечка не должна действовать при к. з. за точкой М , то для обеспечения этого условия необходимо выбрать

Тогда при к. з. за точкой М отсечка не будет действовать, а при повреждении в пределах участка AM – будет работать на той части линии AN, где .

Таким образом, зона действия защиты, с током срабатывания, охватывает только часть линии AN и не выходит за пределы участка AM.

Токовые отсечки применяются как в радиальной сети с односторонним питанием, так и в сети, имеющей двустороннее питание. Для обеспечения расчетной зоны действия отсечки трансформаторы тока, питающие ее цепи, должны работать при токе срабатывания отсечки (т. е. при ) с погрешностью ε или .

Принципиальные схемы отсечек мгновенных (без выдержки времени) и с выдержкой времени на постоянном оперативном токе .

В сети с изолированной нейтралью или заземленной через большое сопротивление применяются двухфазные схемы, подобные схемам максимальной токовой защиты.

Так же как и максимальные защиты, отсечки выполняются на постоянном и переменном оперативном токе, а также с помощью реле прямого. Схемы отсечек с выдержкой времени полностью совпадают со схемами максимальных защит с независимой выдержкой времени. Схемы отсечек без выдержки времени отличаются от схем максимальной защиты отсутствием реле времени.

Отсечки мгновенного действия на линиях с односторонним питанием

По условию селективности с защитами остальной сети отсечка без выдержки времени (с tз = 0) не должна работать за пределами защищаемой линии. Ток срабатывания мгновенной отсечки должен удовлетворять условию (5-2) при к. з. в конце защищаемой линии АВ, т. е. в точке М. В соответствии с этим принимается, что

где Iк.макс – максимальный ток к. з. в фазе линии при к. з. на шинах подстанции; kн – коэффициент надежности, учитывающий погрешность в расчете тока к. з. Iк.макс и погрешность в токе срабатывания реле. Ток к. з. Iк.макс рассчитывается для таких режимов работы системы и видах повреждений, при которых он оказывается наибольшим. Поскольку собственное время действия отсечки равно 0,02 – 0,01 с, то ток Iк.макс рассчитывается для начального момента времени (t = 0) и принимается равным действующему значению периодической составляющей. При расчете тока к. з. генераторы замещаются сверхпереходным сопротивлением.

В схемах отсечки, где токовые реле действуют непосредственно на отключение без промежуточного реле, время действия отсечки может достигать одного периода (т. е. 0,02 с). В этом случае следует учитывать апериодическую составляющую тока к. з., умножая ток Iк.макс на коэффициент kа = 1,6 – 1,8. У отсечек для защиты линий с токовыми реле типа РТ коэффициент надежности kн = 1,2 – 1,3.

Правила устройства электроустановок рекомендуют применять отсечку, если ее зона действия охватывает не меньше 20% защищаемой линии. Вследствие простоты отсечки она применяется в качестве дополнительной защиты при зоне действия, меньшей 20%, если основная защита линии имеет мертвую зону.

Время действия мгновенной отсечки складывается из времени срабатывания токовых и промежуточного реле (рис. 6). При быстродействующих промежуточных реле (0,02 с) отсечка срабатывает в течение времени t3 = 0,04 – 0,06 с. Промежуточное реле облегчает работу контактов токовых реле и позволяет не учитывать апериодическую составляющую тока к. з., поскольку последняя затухает очень быстро (за 0,02 – 0,03 с).

На линиях, защищенных от перенапряжений трубчатыми разрядниками, отсечка может срабатывать при их действии. Время работы разрядников составляет около 0,01 – 0,02 с. При каскадном действии разрядников оно увеличивается до 0,04 – 0,06 с. Применением промежуточного реле с временем действия t = 0,06 – 0,08 с удается отстроить отсечку от работы разрядников.

Отсечки с выдержкой времени

Мгновенная отсечка защищает только часть линии, чтобы выполнить защиту всей линии с минимальным временем действия, применяется отсечка с выдержкой времени . Зона и время действия такой отсечки 1 согласуются с зоной и временем действия мгновенной отсечки 2 так, чтобы была обеспечена селективность.

Для выполнения этих условий время действия защиты tз1 отсечки 1 выбирается на ступень Δt больше tз2 отсечки 2:

Практически в зависимости от точности реле времени отсечки 1

tз = 0,3 – 0,6 с.

Зоны действия отсечек 1 и 2 согласуются между собой при условии, что зона действия отсечки 1 должна быть короче зоны работы отсечки 2 .

В сети с односторонним питанием ток, проходящий через защиты 1 и 2 при к. з. на линии JI2 (точка К), одинаков. Поэтому согласование зон действия защит 1 и 2 можно обеспечить, выбрав

При таком соотношении токов срабатывания защит отсечка 1 не будет действовать, если ток к. з. недостаточен для действия отсечки 2.

Схемы отсечки с выдержкой времени выполняются так же, как и схемы максимальных защит с независимой характеристикой. Токовая отсечка с выдержкой времени охватывает полностью защищаемую линию и частично следующий участок.

Токовые отсечки мгновенного действия являются самой простой защитой. Быстрота их действия в сочетании с простотой схемы и обслуживания составляет весьма важное преимущество этих защит.

Недостатками мгновенной отсечки являются: неполный охват зоной действия защищаемой линии и непостоянство зоны действия под влиянием сопротивлений в месте повреждения и изменений режима системы, однако последнее не оказывает существенного влияния в мощных энергосистемах.

Отсечка с выдержкой времени позволяет обеспечить достаточно быстрое (tз ≈ 0,5 с) отключение повреждений на защищаемой линии. Сочетание отсечек и максимальной защиты позволяет получить трехступенчатую защиту, которая во многих случаях успешно заменяет более сложные защиты.

Литература

Правила устройства электроустановок: 7-е изд. – М.: Главгоснадзор России, 2003.

Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (ПОТ РМ-016-2001 РД 153-34.0-03.150-00). – М.: «Изд-во НЦ ЭНАС», 2001.

Козлов В.А., Куликович Л.М. Прокладка, обслуживание и ремонт кабельных линий. – Л.: Энергоатомиздат, 1984.

Чернобровов Н.В. Релейная защита. М.: «Энергия», 1974.

Справочник по наладке электроустановок. Под ред. Дорофеюка А.С., Хачумяна А.П., М.: «Энергия», 1976.

Эксплуатационная производственная практика. Программа и методические указания. Сост.: Злобин Ю.И., Осипенко Г.А; Чуваш. Ун-т. Чебоксары, 2006.

https://www.rosneft.ru/

Содержание

1. Введение

2. Общие понятия о релейной защите

2.1. Требования, предъявляемые к релейной защите

2.2. Элементы защиты, реле и их разновидности

2.3. Источники оперативного тока

2.4. Общие принципы выполнения реле

3. Устройство релейной защиты и типы ее, используемые для защиты кабельных линий

3.1. Максимальная токовая защита.

3.2. Токовые отсечки

3.3. Защита от замыканий на землю

4. Литература

Введение

Служба релейной защиты, автоматики, электроизмерений и испытаний «РН-Юганскнефтегаз» обеспечивает организацию и проведение высоковольтных испытаний электрооборудования, работ по защите электрических сетей от перенапряжения, ремонт и техническое обслуживание систем связи, каналов электроавтоматики, устройств телемеханики.

Предметом деятельности предприятия является оказание услуг по ремонту и обслуживанию воздушных и кабельных линий

0,4 – 10 кВ, трансформаторных подстанций и распределительных пунктов, установок наружного освещения, архитектурно-художественной подсветки и реконструкции и технического перевооружения городских электрических сетей.

На балансе предприятия находятся 10 распределительных пунктов, 134 трансформаторные подстанции, содержащие 252 трансформатора установленной мощности 112 МВА. Общая протяженность ЛЭП, обслуживаемых ООО «РН-Юганскнефтегаз» составляет свыше 1500 км.

Общие понятия о релейной защите

В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.

Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы. Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит. Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.

Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи. Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условии их работы и прекращая разрушения в месте повреждения.

Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.), для этого были созданы защитные устройства, выполняемые при помощи специальных автоматов – реле, получившие название релейной защиты.

Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует па возникновение повреждений и ненормальных режимов. При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения. При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.

В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей. К основным устройствам такой автоматики относятся: автоматы повторного включения (АПВ), автоматы включения резервных источников питания и оборудования (АВР) и автоматы частотной разгрузки (АЧР).

Требования, предъявляемые к релейной защите

1. Селективность.

Селективностью или избирательностью защиты называется способность защиты отключать при к. з. только поврежденный участок сети. Селективное отключение повреждения является основным условием для обеспечения надежного электроснабжения потребителей. Неселективное действие защиты приводит к развитию аварий. Неселективные отключения могут допускаться, но только в тех случаях, когда это диктуется необходимостью и не отражается на питании потребителей.

2. Быстрота действия.

Отключение к. з. должно производиться с возможно большей быстротой для ограничения размеров разрушения оборудования, повышения эффективности автоматического повторного включения линий и сборных шин, уменьшения продолжительности снижения напряжения у потребителей и сохранения устойчивости параллельной работы генераторов, электростанций и энергосистемы в целом. Последнее из перечисленных условий является главным.

В современных энергосистемах для сохранения устойчивости требуется весьма малое время отключения к. з. Так, например, на ЛЭП 300 – 500 кВ необходимо отключать повреждение за 0,1 – 0,12 с после его возникновения, а в сетях 110 – 220 кВ – за 0,15 – 0,3 с. В распределительных сетях 6 и 10 кВ, отделенных от источников питания большим сопротивлением, к. з. можно отключать со временем примерно 1,5 – 3 с, так как они не вызывают опасного понижения напряжения на генераторах и не влияют поэтому на устойчивость системы.

Полное время отключения повреждения складывается из времени работы защиты и времени действия выключателя , разрывающего ток к. з., т. е. . Наиболее распространенные выключатели действуют со временем 0,15 – 0,03 с. Чтобы обеспечить при таких выключателях указанное выше требование об отключении к. з., например, с t = 0,2 с, защита должна действовать с временем 0,05 – 0,12 с, а при необходимости отключения с t = 0,12 с и действии выключателя с 0,08 с время работы защиты не должно превышать 0,04 с. Защиты, действующие с временем до 0,1 – 0;2 с, считаются быстродействующими. Современные быстродействующие защиты могут работать с временем 0,02 – 0,04 с.

3. Чувствительность.

Для того чтобы защита реагировала на отклонения от нормального режима, которые возникают при к. з. (увеличение тока, снижение напряжения и т. п.), она должна обладать определенной чувствительностью в пределах установленной зоны ее действия. Каждая защита должна отключать повреждения на том участке, для защиты которого она установлена, и, кроме того, должна действовать при к. з. на следующем, втором участке, защищаемом следующей защитой. Резервирование следующего участка является важным требованием. Одновременный отказ защиты на двух участках маловероятен, и поэтому с таким случаем не считаются.

Каждая защита должна действовать не только при металлическом к. з., но и при замыканиях через переходное сопротивление, обусловливаемое электрической дугой. Чувствительность защиты должна быть такой, чтобы она могла подействовать при к. з. в минимальных режимах системы, т. е. в таких режимах, когда изменение величины, на которую реагирует защита (ток, напряжение и т. п.), будет наименьшей. Например, если на станции будет отключен один или несколько генераторов, то ток к. з. уменьшится, но чувствительность защит должна быть достаточной для действия и в этом минимальном режиме.

Чувствительность защиты принято характеризовать коэффициентом чувствительности . Для защит, реагирующих на ток к. з.,

где – минимальный ток к. з.; – наименьший ток, при котором защита начинает работать (ток срабатывания защиты).

4. Надежность.

Требование надежности состоит в том, что защита должна безотказно работать при к. з. в пределах установленной для нее зоны и не должна работать неправильно в режимах, при которых ее работа не предусматривается. Требование надежности является весьма важным. Отказ в работе или неправильное действие какой-либо защиты всегда приводит к дополнительным отключениям, а иногда к авариям системного значения.

Надежность защиты обеспечивается простотой схемы, уменьшением в ней количества реле и контактов, простотой конструкции и качеством изготовления реле и другой аппаратуры, качеством монтажных материалов, самого монтажа в контактных соединений, а также уходом за ней в процессе эксплуатации.

Наши рекомендации