Однофазный индукционный счетчик электрической энергии

Принцип действия индукционных приборов основан на взаимодействии переменного магнитного поля с вихревыми токами, индуцируемыми этим же полем в проводящем подвижном диске или цилиндре. Индукционные приборы пригодны лишь для переменных токов, так как ток в диске или цилиндре может индуцироваться лишь действием переменного магнитного потока. Индукционный счетчик имеет две катушки с сердечниками: токовую и катушку напряжения. Поэтому переменное магнитное поле создается двумя магнитными потоками Φ1 и Φ2 , сдвинутыми на некоторый угол по фазе и в пространстве. При этом осуществляется взаимодействие потоков с «чужими» (а не со «своими») индукционными токами. Токовую катушку (рис. 10) навивают толстым проводом на стальной сердечник и включают последовательно с нагрузкой. Магнитный поток Φ1 в ней пропорционален току нагрузки.

Однофазный индукционный счетчик электрической энергии - student2.ru Однофазный индукционный счетчик электрической энергии - student2.ru
Рис. 10. Токовая катушка индукционного прибора   Рис. 11. Катушка напряжения индукционного прибора

Катушку напряжения (рис. 11) навивают большим числом витков тонкого провода на стальной сердечник. Индуктивное сопротивление этого электромагнита намного больше активного, поэтому данную цепь можно считать чисто индуктивной (ток в катушке напряжения отстает по фазе на π/2 ). Таким образом, счетчик состоит из двух электромагнитов и подвижного алюминиевого диска. Схематически устройство индукционного однофазного счетчика показано на рис. 12. Легкий алюминиевый диск D укреплен на оси, которая связана с помощью червячной передачи со счетным механизмом, и вращается в зазоре электромагнитов. Магнитный поток Φ1 электромагнита

U-образной формы (см. рис. 10) создается током приемника электрической энергии, так как его обмотка включена последовательно в цепь нагрузки. Можно считать, что поток Φ1 пропорционален току: Φ1 ~ I.

На втором электромагните (см. рис. 11) расположена обмотка, включенная параллельно приемнику электрической энергии, и ток в ней пропорционален напряжению сети U . Обмотка состоит из большого числа витков тонкого провода и создает магнитный поток Φ2 , значение которого пропорционально U: Φ2 ~ U. Индуктивное сопротивление этого электромагнита несравненно больше активного, поэтому можно считать, что ток в его обмотке сдвинут по фазе от напряжения на π/2 . Таким образом, магнитные потоки, сдвинутые по фазе и в пространстве, образуют «бегущее» магнитное поле, пересекающее диск. Вихревые токи, индуцируемые в диске магнитными потоками, пропорциональны им: IВ1≈ Ф1 и IВ2 ≈ Ф2. Среднее за период значение электромагнитной силы, возникающей при взаимодействии магнитного поля и вихревого тока и действующей на диск, определяется формулой F = ФIcos γ , где γ - угол сдвига по фазе между потоком Φ и током I.

Однофазный индукционный счетчик электрической энергии - student2.ru

Из этой формулы видно, что взаимодействие между индуцированным током в диске и созданным им магнитным полем не создает электромагнитной силы, так как γ = 0. Электромагнитные силы появляются только в результате взаимодействия магнитного потока Φ1 с током IВ2 и потока Φ2 с током IВ1, и создают вращающий момент.

Под действием этого вращающего момента диск пришел бы в ускоренное вращение и число оборотов не соответствовало бы израсходованной электрической энергии. Поэтому необходимо наличие противодействующего момента. Противодействующий момент создается постоянным магнитом, в поле которого вращается диск, и является тормозным моментом, пропорциональным частоте вращения диска. Когда моменты равны, частота вращения диска постоянна (установившийся режим) и число оборотов диска пропорционально расходу электроэнергии. Индукционные счетчики (рис. 13) обладают слабой чувствительностью к внешним магнитным полям и изменениям температуры окружающей среды и хорошо выдерживают перегрузки. Однако они очень чувствительны к изменению частоты переменного тока в сети, поэтому предназначаются для работы только на определенной частоте (обычно 50 Гц).

Омметры и мегаомметры

Сопротивления различных элементов электрических цепей изменяются в очень широком диапазоне. Сопротивления условно можно разделить на малые (до 1 Ом), средние (от 1 Ом до 100 кОм) и большие (более 100 кОм). Для измерения сопротивлений используют следующие методы: косвенный (с помощью амперметра и вольтметра, с последующим вычислением сопротивления), непосредственной оценки и сравнения (с помощью мостов и потенциометров). Для непосредственного измерения сопротивлений применяют омметры — приборы, у которых шкала проградуирована в омах. Обычно омметр — прибор, объединяющий в одном корпусе миллиамперметр магнитоэлектрической системы, источник питания (батарейку) и добавочный резистор R, ограничивающий ток (рис. 14).

Однофазный индукционный счетчик электрической энергии - student2.ru

Так как малому сопротивлению соответствует большой ток (и наоборот), то для нахождения положения нулевого деления на шкале замыкают ключ К и перемещением движка резистора R добиваются наибольшего отклонения стрелки. Это положение стрелки соответствует нулевому делению шкалы. Затем, подключая известные сопротивления, градуируют шкалу в омах. Отсчет по такой шкале ведется справа налево, а так как по закону Ома между током и сопротивлением существует обратно пропорциональная зависимость, то шкала омметра неравномерна (рис. 15). Она сильно сжата у конца, соответствующего большим сопротивлениям.

Для измерения больших сопротивлений (сопротивления изоляции электрических машин, аппаратов, приборов и электрической сети напряжением до 1000 В) применяются мегаомметры (рис. 16). Омметры с электроизмерительным механизмом позволяют измерять сопротивления, не превышающие нескольких тысяч МОм. Для измерения больших сопротивлений используются электронные омметры (тераомметры).

Термоэлектрические приборы

Термоэлектрический измерительный прибор представляет собой сочетание термоэлектрического преобразователя и электроизмерительного механизма постоянного тока. Применяется для измерения силы и напряжения (реже мощности) электрического тока. Особенно часто применяется при измерении несинусоидальных токов и на повышенных частотах.

На рис. 14 изображена схема термоэлектрического амперметра. Измеряемый ток проходит через подогреватель П (обмотка с большим удельным сопротивлением) и нагревает его. Спай термопары Т прикреплен к подогревателю или находится вблизи него. ЭДС термопары создает ток, проходящий через магнитоэлектрический прибор. Таким образом, показания термоэлектрического прибора пропорциональны мощности, расходуемой на нагревание подогревателя (т. е. квадрату действующего значения тока в нем). Поэтому шкала такого прибора почти квадратична и градуируется в единицах действующего значения тока (в случае вольтметра — действующего значения напряжения).

Однофазный индукционный счетчик электрической энергии - student2.ru

Показания термоэлектрического измерительного прибора слабо зависят от частоты (поэтому они применяются в цепях как постоянного, так и переменного тока) и формы кривой тока или напряжения. В наиболее точных приборах (до 100-150 мА) для ограничения потерь тепла подогреватель вместе с термопарой помещают в вакуумный стеклянный баллон.

Наши рекомендации