Дуговые ртутные лампы высокого давления (ДРЛ)

При повышении давления в лампе и плотности тока разряд в ней становится более интенсивным по излучению. Наряду с излучением в видимой области спектра получается излучение в ультрафиолетовой области. При использовании такого разряда в источниках света требуется исправление его цветности путем преобразования ультрафиолетового излучения в красное.

Для получения такого излучения используются трубчатые кварцевые лампы, называемые в данном случае горелками. Горелка представляет собой кварцевую трубку с впаянными по концам катодами на больший ток, чем при разряде низкого давления. С целью облегчения зажигания впаиваются дополнительные электроды зажигания в один или оба конца трубки, соединенные с противоположным катодом через добавочное сопротивление R - рис. 21. Из-за малого расстояния между основным и дополнительным электродами между ними происходит разряд при включении лампы, приводящий к ионизации газа в трубке. Когда сопротивление столба разряда в трубке станет меньше добавочного сопротивления в цепи дополнительного электрода, начинается разряд между основными электродами. Такие горелки применяются в лампах ДРЛ. Так как работа горелки зависит от действия внешней среды, то она размещается внутри колбы лампы, покрытой изнутри люминофором, который поглощает ультрафиолетовое излучение и превращает его в видимое красное. Внешняя колба лампы наполняется инертным газом. Время, в течение которого происходит установление нормального режима работы лампы, называемое временем разгорания, составляет 7…10 мин. Повторное зажигание лампы возможно только после ее остывания.

Дуговые ртутные лампы высокого давления (ДРЛ) - student2.ru

Рис. 21. Схема конструкции горелки лампы ДРЛ:

1 - основной электрод, 2 - электрод зажигания, 3 - вводы, R - добавочное сопротивление.

Рассмотренные лампы требуют для своей работы ПРА. Лампа с горелкой и нитью накала в колбе не требует специальных устройств для включения и может прямо включаться в сеть. Такие лампы называются ртутно-вольфрамовыми.

ДНаТ – натриевые

Давление в них несколько превышает атмосферное.

Горелка разогревается больше 1300 градусов.

 
  Дуговые ртутные лампы высокого давления (ДРЛ) - student2.ru

Натриевые лампы по исполнению обычно отличаются вытянутой наружной колбой.

Натриевые светят оранжевым светом. В горелке используются не пары ртути, а

соединения натрия.

Осветительными приборами обычно является конструкции, содержащие отражатели света и элементы, фокусирующие и направляющие световой поток.

По конструкции светильники бывают:

Венчающего типа Подвесного типа Консольного типа

Дуговые ртутные лампы высокого давления (ДРЛ) - student2.ru Дуговые ртутные лампы высокого давления (ДРЛ) - student2.ru Дуговые ртутные лампы высокого давления (ДРЛ) - student2.ru

ОСНОВЫ ЭЛЕКТРОНИКИ

Электроника — наука о взаимодействии заряженных частиц (электронов, ионов) с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газоразрядных, полупроводниковых). Одним из главных направлений электроники является полупроводниковая электроника.

Полупроводниковые материалы

По своему удельному сопротивлению полупроводники занимают промежуточную область между проводниками и диэлектриками. Границы между ними весьма условны, так как при достаточно высокой температуре диэлектрик ведет себя как полупроводник, а любой чистый полупроводник при весьма низких температурах подобен диэлектрику.

Дуговые ртутные лампы высокого давления (ДРЛ) - student2.ru

Рис. 22

Для выяснения характера проводимости рассмотрим некоторый объем идеальной кристаллической решетки германия. На рис.22 объемная кристаллическая решетка германия, элементарной геометрической фигурой которой является тетраэдр, изображена в виде плоской решетки.

Атомы германия располагаются в узлах решетки и связаны с другими атомами посредством четырех валентных электронов. Двойные линии между узлами решетки условно изображают ковалентную связь между каждой парой электронов, принадлежащих двум разным атомам. В идеальном кристалле германия при температуре абсолютного нуля Т=0о К все ковалентные связи заполнены и каждый атом имеет достроенную оболочку, состоящую из 8 электронов. Валентная зона полностью занята электронами, а зона проводимости пуста.

Для перевода электронов в зону проводимости необходим дополнительный источник энергии, равный или превышающий энергию запрещенной зоны. Таким источником энергии может быть тепло окружающей среды. При температуре выше абсолютного нуля часть электронов разрывает ковалентные связи и переходит в зону проводимости, освобождая энергетические уровни в валентной зоне. Вакантный энергетический уровень в валентной зоне называют дыркой проводимости, которая в электрическом и магнитном полях ведет себя как частица с положительным зарядом. Такой процесс образования пар электрон проводимости - дырка проводимости называется генерацией пар электрон-дырка. После своего появления дырка проводимости под действием тепловой энергии совершает хаотическое движение в валентной зоне так же, как электрон в зоне проводимости. При этом возможен процесс захвата электронов зоны проводимости дырками валентной зоны . Процесс исчезновения пар электрон-дырка называется рекомбинацией. Этот процесс сопровождается выделением энергии, которая идет на нагрев кристаллической решетки и частично излучается во внешнюю среду.

Если к кристаллу полупроводника приложить электрическое поле, то движение электронов и дырок приобретает некоторую направленность. Таким образом, при температуре выше абсолютного нуля кристалл приобретает способность проводить электрический ток. Такая проводимость называется собственной, а полупроводник — собственным полупроводником. Эта проводимость обычно невелика и увеличивается с повышением температуры.

Если в кристалл германия или кремния добавить примесь элементов третьей или пятой групп таблицы Менделеева, то такой полупроводник называется примесным. Примесные полупроводники обладают значительно большей проводимостью по сравнению с полупроводниками с собственной проводимостью.

Примеси бывают донорные и акцепторные. Донорные примеси отдают свои электроны, создавая в кристалле электронную проводимость, акцепторные — захватывают электроны из решетки основного кристалла, создавая дырочную проводимость примесного полупроводника.

    Дуговые ртутные лампы высокого давления (ДРЛ) - student2.ru

Рассмотрим образование электронной и дырочной проводимости примесных полупроводников.

При внесении предварительно очищенный германий пятивалентного элемента (например, мышьяка - As) атомы примеси замещают в углах кристаллической решетки атомы германия. При этом четыре из пяти валентных электронов мышьяка образуют ковалентные связи с четырьмя соседними атомами германия подобно связям в собственном полупроводнике. Пятый электрон оказывается избыточным. Такой полупроводник обладает в основном электронной проводимостью или проводимостью n-типа (n-полупроводник), а примесь, способная отдавать электроны, называется донорной. Основными носителями заряда в полупроводнике n-типа являются электроны, а неосновными - дырки.

Дуговые ртутные лампы высокого давления (ДРЛ) - student2.ru Рассмотрим примесный полупроводник, в котором часть атомов основного материала /в данном случае кремния/ заменена атомами 3-х валентного индия.

Будет дырка.

Какова концентрация примесей, такова и концентрация дырок. Дырок будет больше на количество атомов, введённых в материал.

Такой полупроводник называют дырочным /или p-типа/.

Примесь, сообщающую полупроводнику дырочный характер проводимости называют акцепторной.

Примеси бывают донорные и акцепторные. Донорные примеси отдают свои электроны, создавая в кристалле электронную проводимость, акцепторные — захватывают электроны из решетки основного кристалла, создавая дырочную проводимость примесного полупроводника. В зависимости от типа примесей, вводимых в полупроводник, их разделяют на два типа:

1. Полупроводники р-типа(positive), обладающие положительной проводимостью, обусловленной наличием избыточных положительных зарядов - дырок.

2. Полупроводники п-типа(negative), обладающие отрицательной проводимостью, обусловленной наличием избыточных электронов.

Под действием внешнего электрического поля эти избыточные заряды приобретают направленное движение, образуя ток, называемый дрейфовым.

Наши рекомендации