Электрические цепи трехфазного переменного тока
Трехфазная цепь представляет собой совокупность электрических цепей, в которых действуют три синусоидальные э.д.с. одинаковой частоты, отличающиеся по фазе одна от другой ( φ = 120о) и создаваемые общим источником энергии. Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, слово фаза в электротехнике имеет два значения – угол φ и часть многофазной системы (отдельный фазный провод).
Основные преимущества трехфазной системы: возможность простого получения кругового вращающегося магнитного поля (это позволило создать электродвигатели переменного тока), экономичность и эффективность (мощность можно передать по трем фазным проводам без применения четвертого общего провода -нейтрали), а также возможность использования двух различных эксплуатационных напряжений в одной установке (фазного и линейного, которые обычно составляют 220 В и 380 В, соответственно).
История появления трехфазных электрических цепей связана с именем М.С. Доливо-Добровольского Петербургского ученого, который в 1886 г., доказав, что многофазные токи способны создавать вращающееся магнитное поле, предложил (запатентовал) конструкцию трехфазного электродвигателя.
Трехфазный ток является простейшей системой многофазных токов, способных создавать вращающееся магнитное поле. Этот принцип положен в основу работы трехфазных электродвигателей.
Предложив конструкцию электродвигателя переменного тока, М.С. Доливо-Добровольский разработал и все основные элементы трехфазной электрической цепи. Трехфазная цепь состоит из трехфазного генератора, трехфазной линии электропередач и трехфазных приемников.
В результате предложенной трехфазной системы электрического тока стало возможным эффективно преобразовывать электрический ток в механическую энергию.
Получение трехфазного тока
Электрическую энергию трехфазного тока получают в синхронных трехфазных генераторах (рис. 27). Три обмотки 2 статора 1 смещены между собой в пространстве на угол 120°. Их начала обозначены буквами А, В, С, а концы – x, y, z. Ротор 3 выполнен в виде постоянного электромагнита, магнитное поле которого возбуждает постоянный ток I, протекающий по обмотке возбуждения 4. Ротор принудительно приводится во вращение от постороннего двигателя. При вращении магнитное поле ротора последовательно пересекает обмотки статора и индуктирует в них ЭДС, сдвинутые (но уже во времени) между собой на угол 120°.
Трехфазный синхронный генератор
Для симметричной системы ЭДС (рис. 28) справедливо
Волновая и векторная диаграммы симметричной системы ЭДС
На диаграмме изображена прямая последовательность чередования фаз (пересечение ротором обмоток в порядке А, В, С). При смене направления вращения чередование фаз меняется на обратное - А, С, В. От этого зависит направление вращения трехфазных электродвигателей.
Существует два способа соединения обмоток (фаз) генератора и трехфазного приемника: «звезда» и «треугольник».
В генераторах трехфазного тока электрическая энергия генерируется в трех одинаковых обмотках, соединенных по схеме звезда. Чтобы сэкономить на проводах линии передачи электроэнергии от генератора к потребителю тянутся только три провода. Провод от общей точки соединения обмоток не тянется, т.к. при одинаковых сопротивлениях нагрузки (при симметричной нагрузке) ток в нем равен нулю.
Схема замещения трехфазной системы, соединенной "звездой"
Согласно первому закону Кирхгофа можно записать IO = IА+ IВ + IС.
При равенстве ЭДС в фазных обмотках генератора и при равенстве сопротивлений нагрузки (т.е. при равенстве значений токов IА,IВ,IС)в представленной на рисунке системе, с помощью векторных диаграмм можно показать, что результирующий ток IO в центральном проводнике будет равен нулю. Таким образом, получается, что в симметричных системах (когда сопротивления нагрузок одинаковы), центральный провод может отсутствовать и линия для передачи системы трехфазного тока может состоять только из трех проводов.
В распределительных низковольтных сетях, в которых присутствует много однофазных потребителей, обеспечение равномерной нагрузки каждой фазы становится не возможным, такие сети делаются четырехпроводными.
Для обеспечения электробезопасносности принято низковольтные потребительские сети (сети<1000В), выполнять 4-х проводными с глухо-заземленной нейтралью.
Напряжение между фазными проводами в линии принято называть линейным напряжением, а напряжение, измеренное между фазным проводом (фазой) и центральным – фазным напряжением.
В системах электроснабжения, в частности в генераторах и трансформаторах подстанций используется преимущественно соединения звездой.