Устройства приема и обработки сигналов

К устройствам приема и первичной обработки сигналов относятся как радиотехнические элементы входных цепей (детекторы, смесители и преобразователи гетеродинного и автодинного типов), так и фотоприемные полупроводниковые элементы (фотодиоды, фототранзисторы, фоторезисторы и приемные оптические модули) и фотоумножители.

Простейшим приемным элементом, как и в обычных системах приема, являются диоды (случай прямого детектирования). Предельная чувствительность этого метода определяется типом применяемого диода, его шумами, способом обработки продетектированного сигнала, параметрами применяемого усилителя и лежит в пределах 10-6 – 10-8 Вт. Применение подобного метода (самого дешевого) оправдано при небольшой дальности или при значительной мощности сигнала в месте приема. Более чувствительным методом (на 30 - 40 дБ) является гетеродинный и автодинный прием (либо методы синхронного и асинхронного детектирования). В этом случае принимаемый с антенны сигнал поступает на нелинейный элемент куда подается дополнительно более мощный, по сравнению с принимаемым сигналом, сигнал гетеродина. При преобразовании выделяется промежуточная частота (либо нулевые биения, для случая синхронного либо асинхронного детектирования), меньшая чем входной сигнал, с амплитудой пропорциональный полезному сигналу. Устройства, выполняющие подобные преобразования, называются преобразователями или смесителями и строятся по однополупериодной, балансной, мостовой или двойной балансной схемам. Различные схемы построения позволяют повысить чувствительность, снизить влияние шума гетеродина, подавить сигнал зеркальной частоты. В интересуемом нас диапазоне частот наиболее часто используются схемы балансного преобразования, которые строятся на диодах с р-п-переходом, барьером Шотки, р--п-структурах и выполняются в полосковом или волноводном вариантах. Автодинные преобразователи отличаются тем, что функцию гетеродина и смесителя выполняет один элемент (транзистор, диод Ганна, ЛПД и др.) с выхода которого и снимается преобразованный сигнал на промежуточной частоте. Последние схемы дают хороший результат при приеме импульсных сигналов в случае совпадения частот принимаемого и генерируемого гетеродином сигналов.

В радиоволновых методах (включая и вариант прямого детектирования) для обработки, выделенного устройством приема, сигналов используются усилители постоянного тока и усилители промежуточной частоты, которые могут быть выполнены как на дискретных элементах (лампах, транзисторах и пр.), так и на микросхемах (операционные усилители: - КР140УД1, К140УД1, 5 - 9, К140УД14, 20, К544УД1, КМ551УД2, К553УД1, 2 и др. - специализированные интегральные схемы). Вопросы согласования последних с устройствами приема заключаются в расчете электрических цепей с требуемыми значениями входного и выходного сопротивлений. Описание и принцип работы устройств обработки рассмотрены в специальной и популярной литературе по радиотехнике и составляют вопрос выходящий за рамки этой книги.

В рассмотренных радиоволновых методах приема входной сигнал и сигнал с выхода преобразователя имеет одну природу.

Фоточувствительные приборы (для приема оптических сигналов) связывают оптическую и радиоэлектронную системы в аппаратуре приема. По этой причине их выбирают с учетом требований ко всему приемному тракту в целом. Их характеристики должны отвечать наилучшему согласованию в цикле приема оптического излучения и обработки электрических сигналов.

При падении на фоточувствительную поверхность прибора оптического излучения полезного сигнала оно частично теряется (отражение, рассеяние), а остальная часть поглощается этой поверхностью, создавая дополнительную электропроводность (фотопроводимость) полупроводникового материала. Это происходит в случае, когда энергия фотонов превышает некоторое пороговое значение. Основным структурным элементом большинства фотоприборов служит р-п-переход или объем полупроводникового материала. Свойства фотоприемников описываются системой характеристик и параметров, выражающих зависимость тока или напряжения сигнала и шума на выходе от различных факторов: мощности, спектрального состава и частоты модуляции возбуждающего излучения, температуры окружающей среды, напряжения питания, наличия фоновых помех и др.

Простейшим фотоприемным элементом является фоторезистор - прибор, изменяющий свою проводимость при наличии освещенности в заданном частотном диапазоне (ФСК-0, 7, СФ2-1, 4-3Д, ФПФ7-1, 9-2, ФДК-1, ФД-3К, 29КП, 20-33К, ФД252, 265Б и др.). В отсутствие облучения темновой ток не превышает нескольких микроампер, а при облучении возрастает на несколько порядков. Недостатками фоторезисторов являются нелинейность световой (при большой освещенности) и вольт амперной характеристик, значительная инерционность (определяемая временем жизни неравновесных носителей заряда в объеме полупроводника) и значительный шум. Такие элементы могут работать в устройстах с быстродействием не более 10-4 с.

Лучшими характеристиками обладают фотодиоды - малоинерционные фотоприемники (ФД-1...7Г). Инерционность их зависит от временных характеристик процесса фотогенерации носителей, условий разделения электронно-дырочных пар, емкости р-п-перехода, а также сопротивления нагрузки. Особую группу фотодиодов, отличающихся очень малой инерционностью, представляют р--п и лавинные фотодиоды, которые способны работать до частот порядка нескольких гигагерц. Темновой ток (протекающий через диод независимо от фототока) представляет собой сумму обратного тока и тока поверхностной утечки. Он вызывает дробовый шум. У кремниевых фотодиодов этот ток мал (около 10-22 А), поэтому и уровень шума относительно невысок. Шумовые характеристики германиевых приборов значительно хуже. Границу чувствительности в области длинных волн определяет ширина запрещенной зоны материала, а падение чувствительности в области коротких волн - уменьшение длины поглощения (поглощение излучения вблизи поверхности и поверхностная рекомбинация фотовозбужденных носителей). Примеры выполнения фотоприемников см. рис. 21 а, б, в, г.

Кроме рассмотренных приборов могут использоваться фототранзисторы (ФТ-1К, - 2Г, ФТ-3, 3Г, ФТГ-4,5) и фототиристоры (первые из названных обладают внутренним усилением выделенного сигнала, а вторые обеспечивают переключение режима с малого тока на большой).

В качестве элементов приема оптического сигнала в случае высоких требований по чувствительности могут использоваться и фотоумножители - выкуумные приборы в которых падающий световой поток выбивает из мишени фотоэлектроны, усиливаемые за счет вторичных электронов с динодов в сильных электрических полях. Однако последние приборы требуют высоких питающих напряжений и специальной оптики для фокусировки падающего светового потока.

Устройства приема и обработки сигналов - student2.ru

Рис. 21

В современных приемных устройствах оптического и инфракрасного диапазонов используются приемные оптические модули, которые представляют собой собранные в общем корпусе устройства, состоящие из фотодетекторов (р--п или лавинного фотодиода) и малошумящих предварительных усилителей. При использовании лавинного фотодиода в качестве фотодетектора можно изменять подаваемое на него напряжение обратного смещения и таким образом регулировать коэффициент лавинного умножения. Последнее позволяет значительно расширить динамический диапазон модуля и таким образом учитывать условия прохождения сигнала при изменении внешних условий эксплуатации (при наличии в модуле блока автоматической регулировки усиления)

При использовании р-i-п-диода в качестве фотодетектора электронная схема предварительного усилителя упрощается. Она сводится к двойному амплитудному детектору, схеме сравнения и фильтру. Динамический диапазон такого модуля значительно ниже. Отечественные приемные оптические модули работают на длине волны 0,85 мкм. Имеют пороговую чувствительность порядка (3 - 1,5)10-6 (фирмы Simens Y23804 - 510-7), потребляемый ток 50 - 120 мА.

В оптическом диапазоне при использовании фоторезисторов наиболее часто используют дифференциальные и мостовые схемы включения, так как в них легко компенсировать изменение фототока, вызываемые температурной нестабильностью и временным дрейфом сопротивления. С помощью фоторезисторов легко осуществить управлением работой транзисторных каскадов.

Фотодиоды, как правило, включают в базовые цепи транзисторов для усиления фототока. Если необходимо линейное усиление фототока, следует применять транзисторные усилители со стабильным коэффициентом передачи тока, интегрирующие и трансимпедпнсные. Для повышения чувствительности фотоприемника могут быть использованы логические микросхемы и особенно КМОП - микросхемы, которые позволяют довести потребляемый ток фотодатчика (без учета тока нагрузки) до наноамперного уровня. Вследствие этого флуктуационные явления в кристаллах фотодиода и микросхемы, вызываемые внутренним перегревом, минимальны. Этим объясняется высокая точность срабатывания фотодатчика.

Для повышения чувствительности фотодиоды используются в фотогальваническом режиме, что увеличивает обнаружительную способность при одинаковых спектральных интервалах. Верхняя граничная частота модуляции излучения служит основанием для выбора прибора. Минимальной постоянной времени обладают p-i-n, фото и лавинные диоды.

Фототранзисторы подключают к усилителям так же, как и фотодиоды, однако фототок транзистора в десятки раз больше, чем у диода.

Фототиристоры можно использовать для непосредственной коммутации нагрузки в низковольтных цепях малой мощности (исполнительные устройства). В мощных и высоковольтных преобразователях маломощный фототиристор управляет мощным, в цепь которого включается требуемая нагрузка.

К приемным устройствам ультразвуковых колебаний относятся различные пьезоэлектрические и акустоэлектрические датчики, параметры которых зависят от падающей на их поверхность звуковой мощности. Такие датчики, со схемами согласования и усиления представляют собой законченные приемные модули, которые формируют входной сигнал в канале приема.

К устройствам предварительной обработки сигналов относятся схемы согласования и усиления, выделенных элементами приема, сигналов.

Требования к элементной базе и устройствам

Из описания принципов работы элементов приема и устройств обработки следует, что все они, в основном, состоят из полупроводниковых приборов, недостатком которых является существенная зависимость их параметров и характеристик от температуры, стабильности питающих напряжений и рабочих токов, а иногда и состояния окружающей среды.

Параметры фотоэлектронных приборов (ФЭП) зависят от схемы включения, способа подачи и значения питающего напряжения, сопротивления нагрузки и др. Рост сопротивления нагрузки и питающего напряжения несколько увеличивает чувствительность прибора, но при этом увеличивается уровень шума. Следует соблюдать полярность прикладываемого напряжения не только для фотодиодов и фототранзисторов но даже для фоторезисторов хотя последние и униполярные приборы.

При эксплуатации ФЭП не допускается их перегрев даже из-за рассеиваемой мощности, т.к. в p-n-переходе и в объеме полупроводника увеличивается уровень собственных шумов, а чувствительность (обнаружительная способность) и темновое сопротивление растут, но при этом максимум спектральной характеристики сдвигается в более коротковолновую область. Это приводит к расстройке системы фотоприемник-фотоизлучатель и допустимо лишь при значительных мощностях в канале связи. Большая часть приемных приборов, кроме того, чувствительна к влиянию вибраций, внешних шумов, наличию полей различной природы. По этой причине, для получения требуемых характеристик, необходимо обеспечить условия нормальной работы элементов согласно ТУ.

При значительной мощности излучения (лазеры, суперлюминесцентные светодиоды) требования к полному совпадению максимумов относительной спектральной чувствительности СД и ФД необязательны. Например, максимум излучения Солнца приходится на 0,55 мкм, но на это излучение реагируют все ФД, поскольку спектр Солнца (как абсолютно черного тела) занимает диапазон до 60 мкм и перекрывает спектр чувствительности всех типов приборов.

В случае радиоволновых методов необходимо обеспечить и требуемую стабильность частоты генерации как передающих, так и приемных местных генераторов - гетеродинов. Последнее достигается стабилизацией, питающих соответствующие схемы напряжений, термостабилизацией отдельных устройств, применением пассивных и реактивных компонентов с соответствующими температурными коэффициентами.

Требования к стабильности параметров приемных и передающих устройств вытекают из принципов их работы и в каждом конкретном случае должны быть рассчитаны, исходя из допусков на точность определения и обнаружения сигналов несанкционированного вторжения. Например, при доплеровском слежении за появлением объектов в поле обзора необходимо оценить значения скоростей движения фиксируемых объектов (с учетом значения доплеровской частоты и частоты зондирующего излучения), которые не должны изменяться за время обзора на величину, превышающую нестабильность генератора. Кроме того, необходимо оценить эффективную отражающую поверхность обнаруживаемого объекта, для реального превышения принимаемого сигнала над шумами и помехами.

5. Примеры размещения и требования к системам охраны

Размещение систем охраны

Исходя из требований технических условий на эксплуатацию датчиков, входных и выходных устройств, электронных блоков формируются основные условия на размещение систем охраны.

Известно, что: устройства, функционирующие на основе электродинамических микрофонов и микрофонных датчиков, датчиков на пьезоэффекте, различных акустических эффектов подвержены влиянию окружающей среды, различных воздушных потоков (сквозняки, вентиляционные заборники воздуха и др.); системы оптического диапазона оказываются неработоспособными в задымленных и запыленных территориях, при наличии тумана и природных осадков; системы радиоволновые и на измерении доплеровского сдвига воспринимают различного рода излучения, включая даже излучения ламп дневного света.

В качестве примера можно привести требования к месту установки приемных и передающих узлов акустической системы типа “ДУЗ-4М-1”: место установки преобразователей должно быть удобным для монтажа; преобразователи крепятся на стенах помещения на высоте 2 - 4 м от пола; расстояние между излучающими и приемными преобразователями может быть от 3 до 10 м; в помещениях прямоугольной формы преобразователи рекомендуется устанавливать на глухих стенах по оси помещения либо по его диагонали; в помещениях большого объема, где требуется несколько пар преобразователей, их следует размещать так, чтобы на каждую пару приходились примерно равные части объема; не рекомендуется располагать преобразователи непосредственно в зоне действия вентиляционных устройств, нагревательных приборов и других источников движения воздуха, поскольку при этом увеличивается вероятность ложных срабатываний прибора; рекомендуется удалять преобразователи от таких источников на расстояние 2 - 3 м и более; особенно неблагоприятными для установки являются батареи центрального отопления, создающие интенсивные потоки воздуха.

Сложными являются и условия эксплуатации подобных систем: температура окружающей среды +5 OС - +40 OС; относительная влажность до 80% при 25 OС; уровень акустических шумов в помещениях в диапазоне от 10 до 20 кГц должен быть не более 60 дБ относительно порога слышимости (0,00002 Нм2); площадь застекленной поверхности в помещении, через которую может проникать прямое солнечное излучение, должна составлять не более 25% от площади пола; скорость движения воздуха в помещении не должна превышать 0,5 мс; система отопления должна иметь температуру радиаторов не более 90 OС; площадь поверхности радиаторов, приходящаяся на 1 м2 площади пола помещения, должна быть не более 0,2 м2; телефоны и звонки, а также приборы и устройства, которые могут при своей работе создавать акустические помехи, должны отключаться на время работы.

Радиоволновые и доплеровские системы предъявляют менее жесткие требования к условиям и порядку установки, так как образование радиотени, в отличие от акустических систем происходит при значительно больших размерах облучаемых объектов. Как правило, источники излучения располагают в углах помещений под потолком, причем их можно скрыть различными декоративными дополнениями либо радиопрозрачными пленками. В открытых пространствах расположением излучателей формируют заданный периметр охраняемой территории, при этом условия расположения как радиоволновых, так и доплеровских систем совпадают. Комбинированные системы могут использоваться как в замкнутых, так и в открытых пространствах. Необходимо только установить порог срабатывания выше естественных флуктуирующих компонент и возможных животных - нарушителей. Использование схем селекции подвижных объектов, указанный порог может быть понижен при учете реальных эффективных отражающих поверхностей нарушителей.

В качестве примера можно изложить требования по размещению микроволнового сигнализатора “СМВ-11М”.

Установку необходимо производить на жестких опорах, устойчивых к вибрациям на высоте не менее 2 - 3 м от пола. Не допускается расположение металлических отражающих поверхностей на расстоянии менее чем 2 м от сигнализатора. Не рекомендуется направлять его на окна или тонкие перегородки, за которыми возможно движение людей, транспорта или работа какого-либо оборудования, на лампы дневного света.

Более сложные радиоволновые системы предъявляют и более жесткие требования по установке.

Оптические и оптоволоконные системы по своей структуре близки к системам с натянутыми проводами и емкостными (сеточными) заграждениями. Интересными являются решения по применению в крупногабаритных ангарах систем теплолокации и оптической охраны. При этом периметр необходимой охраны формируется источником и рядом отражателей, которые могут создавать как горизонтальные, так и объемные пространства.

Комбинированные системы, объединяющие радиоволновые и оптические (“Сокол 1, 2”), радиоволновые и акустические (“Питон”) и др. предъявляют при эксплуатации требования всех типов устройств, включенных в систему охраны.

Требования к передающим и приемным частям системы охраны и их конструкции

Для простейших систем охраны, в которых приемные и передающие части представляют собой системы специального питания и контроля омического сопротивления или величины емкости, требования формируются в основном пороговыми значениями измеряемых величин и значениями флуктуаций.

В оптических и теплолокационных системах нормальная работа устройств возможна при фоновом засвете значительно уступающем уровню полезного сигнала охраны. Для повышения чувствительности таких устройств требуется либо заглубление источников излучения и приема, либо применение специальных фильтров. Работа подобных систем в открытых пространствах осуществляют чаще всего в ИК диапазоне и основную погрешность при измерениях вносят переотраженные солнечные лучи и нагретые предметы вблизи приемников излучения.

Если несколько пар фотоизлучателей - приемников расположены близко друг от друга, то также возможны их взаимные помехи и прием сигналов от соседних источников. Поэтому пары следует разносить в пространстве, располагать встречно и использовать бленды, диафрагмы и оптические линзы (рис. 22).

Устройства приема и обработки сигналов - student2.ru

Рис. 22

Снижает чувствительность фотоприемников в 2 - 4 раза и нарушение прозрачности среды (задымленность, запыленность, туман и пр.), использование бленд и диафрагм.

В радиоволновых системах и системах на основе измерения доплеровского сдвига частоты основным требованием к приемным и передающим блокам при импульсном режиме (особенно при гетеродинном приеме) является частотная стабильность, которая должна быть значительно выше принимаемого доплеровского сдвига или смещения сигнала от подвижной цели. Указанный параметр ограничивает минимальную фиксируемую скорость перемещения объекта в охраняемом объеме.

На основе системы “Конус-3М-1” рассмотрим пример конструктивного оформления отдельных узлов.

Сигнализатор выполнен в виде отдельных блоков. Электронный блок изготовлен в пылебрызгозащищенном исполнении и состоит из корпуса, крышки и шасси блока. Шасси вставлен в корпус, укреплен винтами, закрывается крышкой и зажимается зажимами. При закрывании крышки кнопка блокировки замыкается. Один из винтов опломбировывается.

Корпус литой из алюминиевого сплава, окрашен молотковой эмалью серого цвета и имеет детали крепления его к стене.

Крышка блока выполнена по технологии корпуса и на ней расположены: упругий регулируемый элемент кнопки блокировки; стекло индикаторной лампы; резиновое уплотнение.

Шасси блока состоит из двух литых рам на которых размещена вся электронная часть, платы с: элементами логарифмического усилителя, синхронных детекторов и блокинг-генераторов; элементами порогового устройства и схемы АПР; элементами модулятора, порогового устройства, схемы дистанционного контроля и узла питания; элементами выпрямителя, реле схемы АПР; блоками ключей, регулировки периодов и батарея аккумуляторов.

На передней панели блока находятся элементы регулировки, управления и контроля.

На задней панели блока размещены разъемы для связи электронного блока с: приемниками, передатчиками, питающей сетью 220 В, питающей сетью 24 В, стационарным аппаратом (Сигнал) и другим электронным блоком (Синхр.).

Кроме того, на задней панели установлены: тумблеры включения сигнализатора и звукового оповещения, громкоговоритель, клемма заземления.

Все металлические детали блока защищены специальным покрытием, а платы с радиоэлементами - влагозащитным лаком.

Провода электрического монтажа объединены в жгут и крепятся к боковым стенкам корпуса.

Приемник состоит из основания, на котором крепятся СВЧ детектор и антенна, соединенные между собой с помощью ВЧ кабеля. На основании закреплены также переменный резистор и вилка НЧ разъема, через который осуществляется связь приемника с электронным блоком.

Корпус СВЧ детектора литой, состоит из двух частей, фланцы которых соединены винтами. Транзистор детектора расположен в экранированном отсеке торцевой части корпуса и закрывается крышкой. На боковых стенках корпуса установлены проходные фильтры, проходная втулка и ВЧ разъем. На торцевую сторону корпуса детектора выведен винт конструктивного подстроечного конденсатора, который после настройки контрится гайкой. Видеоусилитель расположен на отдельной плате и располагается над корпусом детектора на металлических стойках.

Блок приемника закрывается сверху крышкой из пенопласта. В основании блока имеется отверстие для установки его на изолирующую планку, которая в свою очередь крепится к стене.

Передатчик состоит из основания, на котором крепятся автогенератор и антенна, соединенные ВЧ кабелем. На основании закреплены переменные резисторы и розетка НЧ разъема, через которую передатчик связан с электронным блоком.

Корпус автогенератора литой, состоит из двух частей. Транзистор генератора установлен с помощью держателя из фторопласта в монтажном отсеке торцевой части корпуса, закрываемого крышкой. Винт конструктивного конденсатора связи выведен в монтажный отсек и после настройки контрится гайкой. Винт подстроечного конденсатора настройки контура выведен на внешнюю стороны корпуса и также контрится.

На боковых стенках корпуса автогенератора установлены проходные фильтры и ВЧ разъем для подключения антенного кабеля. Блок передатчика закрывается крышкой из пенопласта и крепится винтами. В основании блока имеются отверстия, для установки его на изолирующую пластину.

Наши рекомендации