Провода и грозозащитные тросы воздушных линий

Провода и грозозащитные тросы воздушных линий

На ВЛ чаще всего применяются неизолированные провода. Материал проводов должен иметь высокую электрическую проводимость. Наибольшую проводимость имеет медь, затем алюминий; сталь имеет значительно более низкую проводимость. Провода и тросы должны быть выполнены из металла, обладающего достаточной прочностью. По механической прочности на первом месте стоит сталь. Материал проводов и тросов должен быть стойким по отношению к коррозии и химическим воздействиям. В настоящее время наибольшее распространение получили провода алюминиевые (А), сталеалюминевые (АС), а также из сплавов алюминия - (АН, АЖ). Медные провода не используются без специальных технико-экономических обоснований.

Грозозащитные тросы, как правило, выполняются из стали. В последние годы грозозащитные тросы используются для организации высокочастотных каналов связи. Такие тросы выполняются сталеалюминевыми.

Провода и грозозащитные тросы воздушных линий - student2.ru

Рис. 2.2. Конструкции проводов ВЛ: а - общий вид многопроволочного провода; б – сечение однопроволочного провода; в, г –сечения многопроволочных проводов из одного и двух металлов; д - сечение полого провода.

Конструкции и общий вид неизолированных проводов приведены на рис. 2.2. Однопроволочный провод (рис.2.2,б) состоит из одной круглой проволоки. Такие провода дешевле многопроволочных, однако, они менее гибки и имеют меньшую механическую прочность. Многопроволочные провода из одного металла (рис.2.2,в) состоят из нескольких свитых между собой проволок. При увеличении сечения увеличивается число проволок. В многопроволочных сталеалюминевых проводах (рис.2.2,г) сердечник провода (внутренние проволоки) выполняется из стали, а верхние проволоки - из алюминия.

Стальной сердечник увеличивает механическую прочность, алюминий является токопроводящей частью провода. Полые провода (рис. 2.2, д) изготовляют из плоских проволок, соединенных друг с другом в паз, что обеспечивает конструктивную прочность провода. У таких проводов больший по сравнению со сплошными проводами диаметр, благодаря чему повышается напряжение, при котором появляется коронирующий разряд на проводах, и значительно снижаются потери энергии на корону. Полые провода применяются на ВЛ редко, они главным образом используются для ошиновки подстанций 330 кВ и выше. Для снижения потерь электроэнергии на корону ВЛ при Uном ≥ ЗЗ0 кВ каждая фаза ВЛ расщепляется на несколько проводов.

Наиболее широко применяются сталеалюминевые провода. Проводимость стального сердечника не учитывается, а за электрическое сопротивление принимается только сопротивление алюминиевой части. В соответствии с ГОСТ 839-80 выпускаются сталеалюминевые провода марок АС, АСКС, АСКП, АСК.

Провод марки АС состоит из стального сердечника и алюминиевых проволок. Провод предназначается для ВЛ при прокладке их на суше, кроме районов с загрязненным вредными химическими соединениями воздухом. Коррозионностойкие провода АСКС, АСКП, АСК предназначены для ВЛ, проходящих по побережьям морей, соленых озер и в промышленных районах с загрязненным воздухом; АСКС и АСКП - это провода марки АС, в которых межпроволочное пространство стального сердечника (С) или всего провода (П) заполнено нейтральной смазкой повышенной термостойкости; АСК - провод марки АСКС, где стальной сердечник изолирован двумя лентами полиэтиленовой пленки. В обозначение марки провода вводится номинальное сечение алюминиевой части провода и сечение стального сердечника, например АС 120/19 или АСКС 150/34.

Опоры воздушных линий

Провода и грозозащитные тросы воздушных линий - student2.ru Основными типами опор ВЛ являются анкерные и промежуточные. Опоры этих двух основных групп различаются способом подвески проводов. На промежуточных опорах провода подвешиваются с помощью поддерживающих гирлянд изоляторов (рис.2.1). Расстояние между промежуточными опорами называется промежуточным пролетом или просто пролетом, а расстояние между анкерными опорами - анкерным пролетом. Промежуточные опоры устанавливаются на прямых участках ВЛ для поддержания провода в анкерном пролете. Промежуточная опора дешевле и проще в изготовлении, чем анкерная, так как благодаря одинаковому тяжению проводов по обеим сторонам она при необорванных проводах, т. е. в нормальном режиме, не испытывает усилий вдоль линии. Промежуточные опоры составляют 80-90 % общего числа опор ВЛ.

Анкерные опоры предназначены для жесткого закрепления проводов в особо ответственных точках ВЛ: на пересечениях инженерных сооружений (например, железных дорог, ВЛ 330—500 кВ, автомобильных дорог шириной проезжей части более 15 м и т.д.) и на концах ВЛ. Анкерные опоры на прямых участках трассы ВЛ при подвеске проводов с обеих сторон от опоры в нормальных режимах выполняют те же функции, что и промежуточные опоры. Но анкерные опоры рассчитываются на восприятие односторонних тяжений по проводам и тросам при обрыве проводов или тросов в примыкающем пролете. Анкерные опоры значительно сложнее и дороже промежуточных, и поэтому число их на каждой линии должно быть минимальным.

Провода и грозозащитные тросы воздушных линий - student2.ru Угловые опоры устанавливают в точках поворота линии. Углом поворота линии называется угол a в плане линии, дополнительный до 1800 к внутреннему углу b линии. Траверсы угловой опоры устанавливают по биссектрисе угла b.

Угловые опоры могут быть анкерного и промежуточного типа. Кроме нагрузок, воспринимаемых промежуточными опорами, на угловые опоры действуют также нагрузки от поперечных составляющих тяжения проводов и тросов. Чаще всего при углах поворота линий до 20° применяют угловые опоры анкерного типа.

Угол поворота ВЛ: 1 - подножники опоры; 2- траверса; 3 - петля

На ВЛ применяются специальные опоры следующих типов: транспозиционные - для изменения порядка расположения проводов на опорах; ответвительные - для выполнения ответвлений от основной линии; переходные - для пересечения рек, ущелий и т. д.

Транспозицию применяют на линиях напряжением 110кВ и выше протяженностью более 100 км для того, чтобы сделать емкость и Провода и грозозащитные тросы воздушных линий - student2.ru индуктивность всех трех фаз цепи ВЛ одинаковыми. При этом на опорах последовательно меняют взаимное расположение проводов по отношению друг к другу на разных участках линии: провод каждой фазы проходит одну треть длины линии на одном, вторую - на другом и третью - на третьем месте. Такое тройное перемещение проводов называют циклом транспозиции.

Провода и грозозащитные тросы воздушных линий - student2.ru Наиболее распространенные расположения проводов и грозозащитных тросов на опорах изображены на рис. Расположение проводов треугольником (рис.а) применяют на ВЛ 10кВ и на одноцепных ВЛ 35-330кВ с металлическими и железобетонными опорами. Горизонтальное расположение проводов (рис.б) используют на ВЛ 35-220 кВ с деревянными опорами и на ВЛ 330 кВ. Это расположение проводов позволяет применять более низкие опоры и уменьшает вероятность схлестывания проводов при образовании гололеда и пляске проводов. Поэтому горизонтальное расположение предпочтительнее в гололедных районах. На двухцепных ВЛ расположение проводов обратной елкой удобнее по условиям монтажа (рис.в), но увеличивает массу опор и требует подвески двух защитных тросов. Наиболее экономичны двухцепные ВЛ 35—330 кВ на стальных и железобетонных опорах с расположением проводов бочкой (рис.г).

Расположение проводов и тросов на опорах: а - по вершинам треугольника; б - горизонтальное; в - обратная елка; г - бочка

Деревянные опоры применяют на ВЛ до 35 кВ включительно. Достоинства этих опор - малая стоимость (в районах, располагающих лесными ресурсами) и простота изготовления. Недостаток - подверженность древесины гниению, особенно в месте соприкосновения с почвой. Эффективное средство против гниения - пропитка специальными антисептиками.

Провода и грозозащитные тросы воздушных линий - student2.ru Металлические (стальные) опоры, применяемые на линиях электропередачи напряжением 35 кВ и выше, для защиты от коррозии в процессе эксплуатации требуют окраски. Устанавливают металлические опоры на железобетонных фундаментах. Эти опоры по конструктивному решению тела опоры могут быть отнесены к двум основным схемам - портальным (рис.2.7, а,б) и башенным или одностоечным (рис.2.7, в,г) а по способу закрепления на фундаментах - к свободностоящим опорам (рис.2.7.г) и опорам на оттяжках (рис. 2.7, а-в).

Металлические опоры:

а - промежуточная одноцепная на оттяжках 500 кВ;

б - промежуточная V - образная 1150кВ;

в - промежуточная опора ВЛ постоянного тока 1500 кВ;

г - свободностоящая 110 кВ

Независимо от конструктивного решения и схемы металлические опоры выполняются в виде пространственных решетчатых конструкций. Анкерные опоры отличаются от промежуточных увеличенными вылетами траверс и усиленной конструкцией тела опоры. На ВЛ 500 кВ, как правило, применяется горизонтальное расположение проводов. Промежуточные опоры 500 кВ могут быть портальными свободностоящими или на оттяжках. Наиболее распространенная конструкция опоры 500 кВ - портал на оттяжках (рис.2.7, а). Для линии 750 кВ применяются как портальные опоры на оттяжках, так и V-образные опоры типа «Набла» с расщепленными оттяжками. Основным типом промежуточных опор для линий 1150 кВ являются V-образные опоры на оттяжках с горизонтальным расположением проводов (рис.2.7, б).

Провода и грозозащитные тросы воздушных линий - student2.ru Рис. 2.8.Металлические свободностоящие двухцепные опоры:

а - промежуточная 220 кВ,

б - анкерная угловая 110 кВ

Железобетонные опоры долговечнее деревянных, требуют меньше металла, чем металлические, просты в обслуживании и поэтому широко применяются на ВЛ до 500кВ включительно. При изготовлении железобетонных опор для обеспечения необходимой плотности бетона применяются виброуплотнение и центрифугирование. Виброуплотнение производится различными вибраторами (инструментами или навесными приборами), а также на вибростолах. Центрифугирование обеспечивает хорошее уплотнение бетона и требует специальных машин - центрифуг. На ВЛ 110 кВ и выше стойки опор и траверсы портальных опор - центрифугированные трубы, конические или цилиндрические. На ВЛ 35кВ стойки - центрифугированные или из вибробетона, а для ВЛ более низкого напряжения - только из вибробетона. Траверсы одностоечных опор - металлические оцинкованные.

Для ВЛ 35—500 кВ применяются преимущественно унифицированные конструкции металлических и железобетонных опор. В результате этого сокращено число типов и конструкций опор и их деталей. Это позволило серийно производить опоры на заводах, что позволяет ускорить и удешевить сооружение линий.

Провода и грозозащитные тросы воздушных линий - student2.ru

Рис. 2.9. Промежуточные железобетонные опоры:

а - одностоечная свободностоящаядвухцепная 110 кВ;

б - портальнаясоттяжками одноцепная500 кВ

Заключение

Воздушные линии электропередачи (ВЛ) предназначены для передачи электроэнергии на расстояние по проводам. Основными конструктивными элементами ВЛ являются провода, тросы, опоры, изоляторы и линейная арматура. Провода служат для передачи электроэнергии. В верхней части опор над проводами для защиты ВЛ от грозовых перенапряжений монтируют грозозащитные тросы.

Опоры поддерживают провода и тросы на определенной высоте над уровнем земли или воды. Изоляторы изолируют провода от опоры. С помощью линейной арматуры провода закрепляются на изоляторах, а изоляторы на опорах.

Наибольшее распространение получили одно- и двухцепные ВЛ. Одна цепь трехфазной ВЛ состоит из проводов разных фаз. Две цепи могут располагаться на одних и тех же опорах.

Ø Конструкции кабельных ЛЭП

Кабельная линия (КЛ) линия для передачи электроэнергии, состоящая из одного или нескольких параллельных кабелей, выполненная каким-либо способом прокладки (рис. 11). Кабельные линии прокладывают там, где строительство ВЛ невозможно из-за стесненной территории, неприемлемо по условиям техники безопасности, нецелесообразно по экономическим, архитектурно-планировочным показателям и другими требованиям. Наибольшее применение КЛ нашли при передаче и распределении ЭЭ на промышленных предприятиях и в городах (системы внутреннего электроснабжения) при передаче ЭЭ через большие водные пространства и т. п. Достоинства и преимущества кабельных линии по сравнению с воздушными: неподверженность атмосферным воздействиям, скрытность трассы и недоступность для посторонних лиц, меньшая повреждаемость, компактность линии и возможность широкого развития электроснабжения потребителей городских и промышленных районов. Однако КЛ значительно дороже воздушных того же напряжения (в среднем в 2-3 раза для линий 6-35 кВ и 5-6 раз для линий 110 кВ и выше), сложнее при сооружении и эксплуатации.

Провода и грозозащитные тросы воздушных линий - student2.ru

В состав КЛ входят: кабель, соединительные и концевые муфты, строительные конструкции, элементы крепления и др.

Кабель — готовое заводское изделие, состоящее из изолированных токопроводящих жил, заключенных в защитную герметичную оболочку и броню, предохраняющие их от влаги, кислот и механических повреждений. Силовые кабели имеют от одной до четырех алюминиевых или медных жил сечением 1,5—2000 мм2. Жилы сечением до 16 мм2 —однопроволочные, свыше — многопроволочные. По форме сечения жилы круглые, сегментные или секторные.

Кабели напряжением до 1 кВ выполняются, как правило, четырехжильными, напряжением 6—35 кВ — трехжильными, а напряжением 110—220 кВ — одножильными.

Защитные оболочки делаются из свинца, алюминия, резины и полихлорвинила. В кабелях напряжением 35 кВ каждая жила дополнительно заключается в свинцовую оболочку, что создаст более равномерное электрическое поле и улучшает отвод тепла. Выравнивание электрического ноля у кабелей с пластмассовой изоляцией и оболочкой достигается экранированием каждой жилы полупроводящей бумагой.

В кабелях на напряжение 1—35 кВ для повышения электрической прочности между изолированными жилами и оболочкой прокладывается слой поясной изоляции.

Броня кабеля, выполняется из стальных лент или стальных оцинкованных проволок, защищается от коррозии наружным покровом из кабельной протяжки, пропитанной битумом и покрытой меловым составом.

В кабелях напряжением 110 кВ и выше повышение электрической прочности бумажной изоляции их наполняют газом или маслом под избыточным давлением (газонаполненные и маслонаполненные кабели).

В марке обозначении кабеля указывается сведения о его конструкции, номинальное напряжение, количество и сечение жил. У четырехжильных кабелей напряжением до 1 кВ сечение четвертой (“нулевой”) жилы меньше, чем фазной. Например, кабель ВПГ-1—3Х35+1Х25 — кабель с тремя медными жилами сечением по 35 мм2 и четвертой сечением 25 мм2, полиэтиленовой (П) изоляцией на 1 кВ, оболочкой из полихлорвинила (В), небронированный, без наружною покрова (Г) — для прокладки внутри помещений, в каналах, туннелях, при отсутствии механических воздействий на кабель; кабель АОСБ-35—3Х70 — кабель с тремя алюминиевыми (А) жилами по 70 мм2, с изоляцией на 35 кВ, с отдельно освинцованными (О) жилами, в свинцовой (С) оболочке, бронированный (Б) стальными лентами, с наружным защитным покровом —для прокладки в земляной траншее; ОСБ-35—3Х70 — такой же кабель, но с медными жилами.

Конструкции некоторых кабелей представлены на рисунке 13. На рисунке 13, а,б даны силовые кабели напряжением до 10 кВ.

Четырехжильный кабель напряжением 380 В (см. рис. 13, а) содержит элементы: 1 — токопроводящие фазные жилы; 2 — бумажная фазная и поясная изоляция; 3 - защитная оболочка; 4 - стальная броня; 5 - защитный покров; 6 — бумажный наполнитель; 7 — нулевая жила.

Трехжильный кабель с бумажной изоляцией напряжением 10 кВ (рис. 13, б) содержит элементы: 1 — токоведущие жилы; 2 — фазная изоляция; 3 — общая поясная изоляция; 4 - защитная оболочка; 5 — подушка под броней; 6 — стальная броня; 7 — защитный покров; 8 — заполнитель.

Трехжильный кабель напряжением 35 кВ изображен на рис. 1.3, в. В него входят- 1 — круглые токопроводящие жилы; 2 — пол у про водя тис экраны; 3 — фазная изоляция; 4 - свинцовая оболочка; 5 — подушка; 6 — заполнитель из кабельной пряжи; 7 — стальная броня; 8 — защитный покров.

На рис. 1.3, г представлен маслонаполненный кабель среднего и высокого давления напряжением 110—220 кВ. Давление масла предотвращает появление воздуха к его ионизацию, устраняя одну из основных причин пробоя изоляции. Три однофазных кабеля помещены в стальную трубу 4, заполненную маслом 2 под избыточным давлением. Токоведущая жила 6 состоит из медных круглых проволок и покрыта бумажной изоляцией 1 с вязкой пропиткой; поверх изоляции наложен экран 3 в виде медной перфорированной лепты и бронзовых проволок, предохраняющих изоляцию от механических повреждений при протягивании кабеля в трубе. Снаружи стальная труба защищена покровом 5.

Провода и грозозащитные тросы воздушных линий - student2.ru Широко распространены кабели в полихлорвиниловой изоляции, производимые трех-, четырех- и пятижильными (1.3, е) или одножильными (рис. 1.3, д).

Кабели изготавливаются отрезками ограниченной длины в зависимости о. спряжения и сечения. При прокладке отрезки соединяют посредством соединительных муфт, герметизирующих места соединения. При этом концы жил кабелей освобождают от изоляции и заделывают в соединительные зажимы.

При прокладке в земле кабелей 0,38—10 кВ для зашиты от коррозии и механических повреждений место соединения заключается в защитный чугунный разъемный кожух. Для кабелей 35 кВ используются также стальные или стеклопластиковые кожухи. На рис. 14, а показано соединение трехжильного низковольтного кабеля 2 в Чугунной муфте 1. Концы кабеля фиксированы фарфоровой распоркой 3 и соединены займом 4. Муфты кабелей до 10 кВ с бумажной изоляцией заполняются битуминозными составами, кабели 20—35 кВ — маслонаполненными. Для кабелей с пластмассовой изоляцией применяют соединительные муфты из термоусаживаемых изоляционных трубок, число которых соответствует числу фаз, и одной термоусаживаемой трубки для нулевой жилы, усаживаемых в термоусаживаемую муфту (рис. 14, б). Применяют и другие конструкции соединительных муфт.

Провода и грозозащитные тросы воздушных линий - student2.ru

Для кабелей 10 кВ и ниже с пластмассовой изоляцией во внутренних помещениях применяют сухую разделку (рис. 15, в). Разделанные концы кабеля с изоляцией 3 обматывают липкой полихлорвиниловой лентой 5 и лакируют; концы кабеля герметизируют кабельной массой 7 и изоляционной перчаткой 1, перекрывающей оболочку кабеля 2, концы перчатки и жилы дополнительно уплотняют и обматывают полихлорвиниловой лентой 4, 5, последнюю для предотвращения отставания и разматывания фиксируют бандажами из шпагата 6.

Способ прокладки кабелей определяется условиями трассы линии. Кабели прокладываются в земляных траншеях, блоках, туннелях, кабельных туннелях, коллекторах, по кабельным эстакадам, а так же по перекрытиям зданий (рис. 12).

Наиболее часто на территории городов, промышленных предприятиях кабели прокладывают в земляных траншеях (рис. 12, а). Для предотвращения повреждении из-за прогибов на дне траншеи создают мягкую подушку из слоя просеянной земли или песка. При прокладке в одной траншее нескольких кабелей до 10 кВ расстояние по горизонтали между ними должно быть не менее 0,1 м, между кабелями 20—35 кВ — 0,25 м. Кабель засыпают небольшим слоем такого же грунта и закрывают кирпичом или бетонными плитами для защиты от механических повреждений. После этого кабельную траншею засыпают землей. В местах перехода через дороги и на вводах в здания кабель прокладывают в асбестоцементных или иных трубах. Это защищает кабель от вибраций и обеспечивает возможность ремонта без вскрытия полотна дороги. Прокладка в траншеях — наименее затратный способ кабельной канализации ЭЭ.

В местах прокладки большого количества кабелей агрессивный грунт и блуждающие тою” ограничивают возможность их прокладки в земле. Поэтому наряду с другими подземными коммуникациями используют специальные сооружения: коллекторы, туннели канаты, блоки и эстакады. Коллектор (рис. 12, б) служит для совместного размещения в нем разных подземных коммуникаций: кабельных силовых линий и связи, водопровода по городским магистралям и на территории крупных предприятий. При большом числе параллельно прокладываемых кабелей, например, от здания мощной электростанции, применяют прокладку в туннелях (рис. 12, в). При этом улучшаются условия эксплуатации, снижается площадь поверхности земли, необходимая для прокладки кабелей. Однако стоимость туннелей весьма велика. Туннель предназначен только для прокладки кабельных линий. Его сооружают под землей из сборного железобетона или канализационных труб большого диаметра, емкость туннеля — от 20 до 50 кабелей.

При меньшем числе кабелей применяют кабельные каналы (рис. 12, г), закрытые землей или выходящие на уровень поверхности земли. Кабельные эстакады и галереи (рис. 12, д) используют для надземной прокладки кабелей. Этот вид кабельных сооружений широко применяют там, где непосредственно прокладка силовых кабелей в земле является опасной из-за оползней, обвалов, вечной мерзлоты и т. п. В кабельных каналах, туннелях, коллекторах и по эстакадам кабели прокладываются по кабельным кронштейнам.

В крупных городах и на больших предприятиях кабели иногда прокладываются в блоках (рис. 12,е), представляющих асбестоцементные трубы, стыки, которые заделаны бетоном. Однако в них кабели плохо охлаждаются, что снижает их пропускную способность. Поэтому прокладывать кабели в блоках следует лишь при невозможности прокладки их в траншеях.

В зданиях, по стенам и перекрытиям большие потоки кабелей укладывают в металлические лотки и короба. Одиночные кабели могут прокладываться открыто по стенам и перекрытиям или скрыто: в трубах, в пустотелых плитах и других строительных частях зданий.

Напряжение прикосновения

Напряжение прикосновения - это напряжение между двумя точками цепи тока, которых одновременно касается человек. Одной из этих точек чаще все­го бывает корпус электроустановки, на который может произойти замыкание одного из фазных проводов сети. Второй - земля (токопроводящий пол), на которой стоит человек.

В случае, когда электроустановка питается от сети с глухозаземленной нейтралью, на корпусах зануленных электроустановок может появиться на­пряжение и при замыкании фазы на землю [1].

Величина напряжения прикосновения зависит:

· от наличия связи между корпусом и землей, например, через железобетонный фундамент или заземляющее устройство;

· от места расположения заземлителя относительно корпуса электроустановки;

· от режима нейтрали источника питания;

· от вида заземления.

Снизить величину напряжения прикосновения можно, заземлив корпус электроустановки.

Защитное заземление является основной защитной мерой в электроуста­новках напряжением до 1000 В с изолированной нейтралью и в электроуста­новках выше 1000 В с любым режимом нейтрали.

Ø Требования ПУЭ по заземлению.

1.7.49. Токоведущие части электроустановки не должны быть доступны для случайного прикосновения, а доступные прикосновению открытые и сторонние проводящие части не должны находиться под напряжением, представляющим опасность поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции.

1.7.50. Для защиты от поражения электрическим током в нормальном режиме должны быть применены по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

· основная изоляция токоведущих частей;

· ограждения и оболочки;

· установка барьеров;

· размещение вне зоны досягаемости;

· применение сверхнизкого (малого) напряжения.

Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ, при наличии требований других глав ПУЭ, следует применять устройства защитного отключения (УЗО) с номинальным отключающим дифференциальным током не более 30 мА.

1.7.51. Для защиты от поражения электрическим током в случае повреждения изоляции должны быть применены по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:

· защитное заземление;

· автоматическое отключение питания;

· уравнивание потенциалов;

· выравнивание потенциалов;

· двойная или усиленная изоляция;

· сверхнизкое (малое) напряжение;

· защитное электрическое разделение цепей;

· изолирующие (непроводящие) помещения, зоны, площадки.

1.7.52. Меры защиты от поражения электрическим током должны быть предусмотрены в электроустановке или ее части либо применены к отдельным электроприемникам и могут быть реализованы при изготовлении электрооборудования, либо в процессе монтажа электроустановки, либо в обоих случаях.

Применение двух и более мер защиты в электроустановке не должно оказывать взаимного влияния, снижающего эффективность каждой из них.

1.7.53. Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока.

В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких напряжениях, например, 25 В переменного и 60 В постоянного тока или 12 В переменного и 30 В постоянного тока при наличии требований соответствующих глав ПУЭ.

Защита от прямого прикосновения не требуется, если электрооборудование находится в зоне системы уравнивания потенциалов, а наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока во всех случаях.

Примечание. Здесь и далее в главе напряжение переменного тока означает среднеквадратичное значение напряжения переменного тока; напряжение постоянного тока - напряжение постоянного или выпрямленного тока с содержанием пульсаций не более 10% от среднеквадратичного значения.

1.7.54. Для заземления электроустановок могут быть использованы искусственные и естественные заземлители. Если при использовании естественных заземлителей сопротивление заземляющих устройств или напряжение прикосновения имеет допустимое значение, а также обеспечиваются нормированные значения напряжения на заземляющем устройстве и допустимые плотности токов в естественных заземлителях, выполнение искусственных заземлителей в электроустановках до 1 кВ не обязательно. Использование естественных заземлителей в качестве элементов заземляющих устройств не должно приводить к их повреждению при протекании по ним токов короткого замыкания или к нарушению работы устройств, с которыми они связаны.

1.7.55. Для заземления в электроустановках разных назначений и напряжений, территориально сближенных, следует, как правило, применять одно общее заземляющее устройство.

Заземляющее устройство, используемое для заземления электроустановок одного или разных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т.д. в течение всего периода эксплуатации.

В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению.

Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими.

При выполнении отдельного (независимого) заземлителя для рабочего заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.

Для объединения заземляющих устройств разных электроустановок в одно общее заземляющее устройство могут быть использованы естественные и искусственные заземляющие проводники. Их число должно быть не менее двух.

1.7.56. Требуемые значения напряжений прикосновения и сопротивления заземляющих устройств при стекании с них токов замыкания на землю и токов утечки должны быть обеспечены при наиболее неблагоприятных условиях в любое время года.

При определении сопротивления заземляющих устройств должны быть учтены искусственные и естественные заземлители.

При определении удельного сопротивления земли в качестве расчетного следует принимать его сезонное значение, соответствующее наиболее неблагоприятным условиям.

Заземляющие устройства должны быть механически прочными, термически и динамически стойкими к токам замыкания на землю.

1.7.57. Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы TN.

Для защиты от поражения электрическим током при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания в соответствии с 1.7.78-1.7.79.

Требования к выбору систем TN - C, TN - S, TN – C - S для конкретных электроустановок приведены в соответствующих главах Правил.

1.7.58. Питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы IT следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов. В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с 1.7.81.

1.7.59. Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система TT), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:

RaIa≤50 В,

где Ia - ток срабатывания защитного устройства;

Ra - суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников - заземляющего проводника наиболее удаленного электроприемника.

1.7.60. При применении защитного автоматического отключения питания должна быть выполнена основная система уравнивания потенциалов в соответствии с 1.7.82, а при необходимости также дополнительная система уравнивания потенциалов в соответствии с 1.7.83.

1.7.61. При применении системы TN рекомендуется выполнять повторное заземление PE- и PEN-проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.

Внутри больших и многоэтажных зданий аналогичную функцию выполняет уравнивание потенциалов посредством присоединения нулевого защитного проводника к главной заземляющей шине.

Повторное заземление электроустановок напряжением до 1 кВ, получающих питание по воздушным линиям, должно выполняться в соответствии с 1.7.102-1.7.103.

1.7.62. Если время автоматического отключения питания не удовлетворяет условиям 1.7.78-1.7.79 для системы TN и 1.7.81 для системы IT, то защита при косвенном прикосновении для отдельных частей электроустановки или отдельных электроприемников может быть выполнена применением двойной или усиленной изоляции (электрооборудование класса II), сверхнизкого напряжения (электрооборудование класса III), электрического разделения цепей изолирующих (непроводящих) помещений, зон, площадок.

1.7.63. Система IT напряжением до 1 кВ, связанная через трансформатор с сетью напряжением выше 1 кВ, должна быть защищена пробивным предохранителем от опасности, возникающей при повреждении изоляции между обмотками высшего и низшего напряжений трансформатора. Пробивной предохранитель должен быть установлен в нейтрали или фазе на стороне низкого напряжения каждого трансформатора.

1.7.64. В электроустановках напряжением выше 1 кВ с изолированной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.

В таких электроустановках должна быть предусмотрена возможность быстрого обнаружения замыканий на землю. Защита от замыканий на землю должна устанавливаться с действием на отключение по всей электрически связанной сети в тех случаях, в которых это необходимо по условиям безопасности (для линий, питающих передвижные подстанции и механизмы, торфяные разработки и т.п.).

1.7.65. В электроустановках напряжением выше 1 кВ с эффективно заземленной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.

1.7.66. Защитное зануление в системе TN и защитное заземление в системе IT электрооборудования, установленного на опорах ВЛ (силовые и измерительные трансформаторы, разъединители, предохранители, конденсаторы и другие аппараты), должно быть выполнено с соблюдением требований, приведенных в соответствующих главах ПУЭ, а также в настоящей главе.

1.7.90. Заземляющее устройство, которое выполняется с соблюдением требований к его сопротивлению, должно иметь в любое время года сопротивление не более 0,5 Ом с учетом сопротивления естественных и искусственных заземлителей.

Ø Методика расчета заземляющих устройств.

Сопротивление, которое оказывает току грунт, называется сопротивлением растеканию. В практике сопротивление растеканию относят не к грунту, а к заземлителю и применяют сокращенный условный термин «сопротивление заземлителя». Сопротивление заземлителя Провода и грозозащитные тросы воздушных линий - student2.ru (Rзм) определяется отношением напряжения (Uзм) на заземлителе относительно точки нулевого потенциала к току (Iзм), протекающему через заземлитель, поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

Выбор схемы для расчёта заземления:

В ряд или контур (одиночное заземление рассмотрим позже, см. Примеры расчёта заземляющего устройства) производится для того чтобы определить сопротивление сооружаемого заземления при эксплуатации, его размеры, форму и расчётную часть. Ряд или контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители заглубляются в почву на определенную глубину.

Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.

Размеры и количество этих заземлителей, расстояние между ними, удельное сопротивление грунта – все эти параметры напрямую зависят на сопротивление зазем

Наши рекомендации