Принципиальная схема и цикл одноступенчатой фреоновой холодильной машины
Особенностью фреоновых холодильных машин по сравнению с аммиачными является возможность использования компрессоров со встроенными электродвигателями (герметичных и бессальниковых), а также включения в схему регенеративного теплообменника (РТО), позволяющего повысить эффективность работы машины.
Пар из испарителя направляется в РТО, где он омывает змеевик, внутри которого протекает жидкий хладагент, поступающий из конденсатора. В результате теплообмена пар, забирая теплоту от жидкости, перегревается (процесс 1и-1то), а жидкость внутри змеевика переохлаждается (процесс 3-4).
Если пренебречь теплообменом с окружающей средой, то тепловой баланс РТО можно представить в виде равенства:
.
Задаваясь перегревом пара в РТО и определяя по диаграмме или таблице перегретого пара соответствующие значения энтальпий, из уравнения теплового баланса РТО находят энтальпию i4, по которой определяют положение точки 4.
Из РТО пар поступает в кожух компрессора и, омывая обмотку статора встроенного электродвигателя, еще более перегревается (процесс 1то-1).
.
Величина перегрева зависит от КПД и мощности встроенного электродвигателя. При построении цикла величину ΘКД принимают примерно равной 10…15 0С.
Сравнение циклов
В предыдущем пункте пунктиром показаны процессы: 3-6 – дросселирование в регулирующем вентиле при отсутствии РТО, 1и-7 – сжатие в компрессоре при отсутствии РТО в компрессоре без встроенного электродвигателя.
Из сравнения двух циклов, вытекает, что введение РТО позволяет повысить удельную массовую холодопроизводительность машины:
,
но при этом возрастет перегрев всасываемого пара:
.
Общий перегрев всасываемого пара в РТО и встроенном электродвигателе компрессора:
.
При этом следует учитывать, что необходимая удельная массовая холодопроизводительность компрессора:
.
Величина в кДж/кг показывает, какое количество теплоты отводит 1 кг хладагента, поступающего в компрессор, при рабочих параметрах цикла Р0, Рк, θ1.
В тепловом расчете используют также удельную объемную холодопроизводительность компрессора в кДж/м3:
,
где - удельный объем пара, всасываемого в цилиндр компрессора, м3.
При расчете холодильной машины обычно задаются тепловой нагрузкой на испаритель Qн в кВт. Тогда количество циркулирующего хладагента находят по соотношению , а необходимую холодопроизводительность компрессора:
.
При этом объем пара, всасываемого компрессором, м3/с:
.
Анализ полученных данных показывает, что при работе холодильной машины на R12 с РТО и компрессором, имеющим встроенный электродвигатель, удельная массовая холодопроизводительность машины увеличивается примерно на 10%, но одновременно работа сжатия также возрастает примерно на 12%. Это приводит к незначительному, примерно на 2%, уменьшению холодильного коэффициента ε, увеличению объема всасываемого компрессором пара на 4% и необходимой холодопроизводительности компрессора на 15%.
Таким образом, введение РТО в схему холодильной машины не улучшает ее энергетической эффективности, соответствующей холодильному коэффициенту ε. Применение РТО объясняется практическими условиями работы фреоновых холодильных машин, в первую очередь уносом капель жидкого хладагента из испарителей змеевикого типа и необходимостью обеспечить возврат масла в картер компрессора.
Дополнительный перегрев пара в электродвигателе также отрицательно влияет на холодильный коэффициент ε и приводит к увеличению объема всасываемого компрессором пара, а следовательно, габаритных размеров и металлоемкости компрессора. Однако использование компрессора со встроенным электродвигателем позволяет существенно повысить герметичность всей машины и уменьшить габаритные размеры и металлоемкость компрессорного агрегата.
Расчетные данные цикла на аммиаке (R717) подтверждают лучшие, по сравнению с R12, термодинамические свойства аммиака.
При работе на аммиаке удельная массовая холодопроизводительность машины возрастает в 9 раз, но, так как при этом увеличивается и работа сжатия, холодильный коэффициент повышается лишь на 8%, а объем всасываемого пара уменьшается примерно на 60%. Это позволяет создавать аммиачные машины с меньшими габаритными размерами и металлоемкостью, чем у фреоновых машин.