Электроизоляционные материалы. Классификация. Свойства.

Электроизоляционные материалы. Классификация. Свойства.

Электроизоляционные материалы (диэлектрические материа́лы, диэлектрики, изоляторы) — конструкционные материалы и среды, служащие для изолирования проводников, то есть их электрического разъединения и защиты от внешних воздействий. Основное свойство этих материалов — создание препятствия протеканию электрического тока проводимости (постоянного и переменного).

Свойства

У электроизоляционных материалов желательны большое удельное объёмное сопротивление, высокое пробивное напряжение, малый тангенс диэлектрических потерь и малая диэлектрическая проницаемость . Важно, чтобы вышеперечисленные параметры были стабильны во времени и по температуре, а иногда и по частоте электрического поля.

Электроизоляционные материалы можно подразделить:

по агрегатному состоянию:

· Газообразные

· Жидкие

· Твёрдые

происхождению:

· Природные неорганические

· Искусственные неорганические

· Естественные органические

· Синтетические органические

Газообразные. У всех газообразных электроизоляционных материалов диэлектрическая проницаемость близка к 1 и тангенс диэлектрических потерь так же мал, зато мало и напряжение пробоя. Чаще всего в качестве газообразного изолятора используют воздух,

Жидкие — чаще всего используют в трансформаторах, выключателях, кабелях, вводах для электрической изоляции и в конденсаторах. Причём в трансформаторах эти диэлектрики являются одновременно и охлаждающими жидкостями, а в выключателях − и как дугогасящая среда ( см. Масляный выключатель. В качестве жидких трансформаторное масло

Природные неорганические — наиболее распространённый материал слюда, она обладает гибкостью при сохранении прочности, хорошо расщепляется, что позволяет получить тонкие пластины. Химически стойка и нагревостойка.

Искусственные неорганические: хорошим сопротивлением изоляции обладают малощелочные стёкла, стекловолокно, ситалл, но основным электроизоляционным материалом всё же является фарфор (полевошпатовая керамика). Эта керамика широко используется для изоляторов токонесущих проводов высокого напряжения, Для других более узких задач используется керамика — форстеритовая, глинозёмистая, кордиеритовая и т. д.

Естественные органические: в последнее время в связи с расширением производства синтетических электроизоляционных материалов их применение сокращается. Выделить можно следующие — целлюлоза, парафин, пек, каучук, янтарь и другие природные смолы, из жидких - касторовое масло.

Синтетические органические: большая часть данного материала приходится на долю высокомолекулярных химических соединений — пластмасс, а т.ж. эластомеров ( см.Эластомеры ). Существуют т.ж. синтетические диэлектрические жидкости ( см. Совтол ).

Полупроводниковые химические соединения.

Полупроводниковые химические соединения, соответствующие общим формулам, составлены из элементов различных групп таблицы Д. И. Менделеева, например: ( AIVBIV-SiC; AIIIBV - GaAs; InSb; AnBVI - CdS; SnSe), а также из некоторых оксидов ( например, Cu2O) и веществ сложного состава.

Изполупроводниковых химических соединений следует указать еще на оксиды, сульфиды, селениды, теллуриды, дальтониды.

Под примесями вполупроводниковых химических соединениях понимают не только включения атомов посторонних элементов, но и избыточные по стехнеметрическому составу атомы тех самых элементов, которые входят в химическую формулу самого соединения.

Полупроводниковые материалы подразделяют на простые полупроводники, полупроводниковые химические соединения и многофазные полупроводниковые материалы.

Применяемые в практике полупроводниковые материалы могут быть подразделены на полупроводниковые элементы,полупроводниковые химические соединения и сплавы, полупроводниковые комплексы ( керамические полупроводники), а также стеклообразные и жидкие полупроводники.

Все модификации фосфора обнаруживают фотопроводимость. Фосфор входит в качестве компонента вполупроводниковые химические соединения

Текстильные материалы

Текстильными называются материалы, состоящие из текстильных волокон. К ним относятся сами волокна, нити, пряжа и изделия из них; войлок, фетр, ткани , трикотаж и т.д.

Технические или комплексные волокна состоят из нескольких элементарных волокон, склеенных друг с другом, например, льняное волокно. Как элементарные, так и технические волокна имеют ограниченную длину порядка десятков или сотен мм. Элементарное волокно длиной в несколько сотен метров называется элементарной нитью, например натуральный шелк, химическое волокно.

Сверхпроводники.

Сверхпроводник — материал, электрическое сопротивление которого при понижении температуры до некоторой величины Tc стремится к нулю. При этом говорят, что материал приобретает «сверхпроводящие свойства» или переходит в «сверхпроводящее состояние». В настоящее время проводятся исследования в области сверхпроводимости с целью повышения температуры Tc до комнатной температуры.

Фазовый переход в сверхпроводящее состояние[править | править вики-текст]

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля теплота перехода (поглощения или выделения) из сверхпроводящего состояния в обычное равна нулю, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода.

Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяемая отношением бесконечно малого количества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT[1]:

Фа́зовый перехо́д (фазовое превращение) в термодинамике — переход вещества из одной термодинамической фазы в другую при изменении внешних условий.

Смола кремнийорганическая – синтетическая смола, содержащаясилоксановые группы. КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ, силиконы, представляют собой большую группу разнообразных жидкостей, каучуков и смол. Все они содержат кремний, связанный с органическим углеродом непосредственно или через кислород (полиорганосилоксаны). Кремнийорганические полимерные жидкости

не имеют запаха, сильно различаются по вязкости, температуре кипения и замерзания. Они очень термостойки и если горят, то с большим трудом, мало подвержены воздействию воды, большинства химических и физических факторов, разрушающих обычные органические материалы. В свою очередь, и они очень мало влияют или не влияют совсем на большинство таких органических материалов, как пластмассы, каучуки, краски или живые ткани и организмы. Кремнийорганические жидкости являются хорошими электроизоляционными материалами, прозрачны и обладают гидрофобными свойствами.

Криопроводники.

Кри́опроводники́, металлы, удельное сопротивление которых при охлаждении снижается плавно, без скачков и достигает малых значений при криогенных температурах (см. Низкие температуры). Снижение сопротивления криопроводников при низких температурах достигается за счет уменьшения рассеяния электронов проводимости на тепловых колебаниях кристаллической решетки. Сверхпроводящее состояние в этих материалах не наблюдается. Основное применение криопроводников — изготовления токопроводящих жил кабелей и проводов, работающих при температурах жидкого водорода (-252,6оС) и азота (-195,6оС). Так как в криопроводниках при низких температурах основной вклад в величину удельного сопротивления вносит рассеяние электронов проводимости на дефектах кристаллической решетки (в том числе и на примесных атомах), материал должен быть подвергнут отжигу и иметь высокую степень чистоты. В качестве криопроводников при температуре жидкого водорода применяют чистые медь и алюминий (марки А999 с 0.001% примесей), при температуре жидкого азота – технически чистый бериллий (0.1% примесей) (см. Чистое вещество). При температуре жидкого гелия удельное электрическое сопротивление алюминия А999 достигает значений 1.10-12Ом.м.

Типы и свойства стекол.

Стекло — неорганическое изотропное вещество, материал, известный и используемый с древнейших времён. Существует и в природной форме, в виде минералов (обсидиан — вулканическое стекло), но в практике — чаще всего, как продукт стеклоделия — одной из древнейших технологий в материальной культуре. Структурно — аморфное вещество, агрегатно относящееся к разряду — твёрдое тело/жидкость. В практике присутствует огромное количество модификаций, подразумевающих массу разнообразных утилитарных возможностей, определяющихся составом, структурой, химическими и физическими свойствами.

Физические свойства стекла[править | править вики-текст]

· Плотность стекла зависит от его химического состава

Модуль Юнга (модуль упругости) стёкол также зависит от их химического состава и может изменяться от 48·103 до 12·104 МПа. Например, у кварцевого стекла модуль упругости составляет 71,4·103 МПа. Для увеличения упругости оксид кремния частично замещают оксидами кальция, алюминия, магния, бора.

Прочность: У обычных стёкол предел прочности на сжатие составляет от 500 до 2000 МПа (у оконного стекла около 1000 МПа). Предел прочности на растяжение у стекла значительно меньше, именно поэтому предел прочности стекла при изгибе измеряют пределом прочности при растяжении. Данная прочность колеблется в пределах от 35 до 100 МПа.

· Твёрдость стекла, как и многие другие свойства, зависит от примесей. По шкале Мооса она составляет 6—7 единиц, что находится между твёрдостью апатита и кварца. Наиболее твёрдыми являются кварцевое и малощелочное боросиликатное стекла. С увеличением содержания щелочных оксидов твёрдость стекла снижается. Наиболее мягкое — свинцовое стекло.

Хрупкость. В области относительно низких температур (ниже температуры плавления) стекло разрушается от механического воздействия без заметной пластической деформации и, таким образом, относится к идеально хрупким материалам (наряду с алмазом и кварцем). Данное свойство может быть отражено удельной ударной вязкостью.

· Теплопроводность стекла весьма незначительна и равна 0,0017—0,032 кал/(см·с·град) или от 0,711 до 1,339 Вт/(м·К). У оконных стёкол это число равно 0,0023 (0,96).

Электроизоляционные материалы. Классификация. Свойства.

Электроизоляционные материалы (диэлектрические материа́лы, диэлектрики, изоляторы) — конструкционные материалы и среды, служащие для изолирования проводников, то есть их электрического разъединения и защиты от внешних воздействий. Основное свойство этих материалов — создание препятствия протеканию электрического тока проводимости (постоянного и переменного).

Свойства

У электроизоляционных материалов желательны большое удельное объёмное сопротивление, высокое пробивное напряжение, малый тангенс диэлектрических потерь и малая диэлектрическая проницаемость . Важно, чтобы вышеперечисленные параметры были стабильны во времени и по температуре, а иногда и по частоте электрического поля.

Электроизоляционные материалы можно подразделить:

по агрегатному состоянию:

· Газообразные

· Жидкие

· Твёрдые

происхождению:

· Природные неорганические

· Искусственные неорганические

· Естественные органические

· Синтетические органические

Газообразные. У всех газообразных электроизоляционных материалов диэлектрическая проницаемость близка к 1 и тангенс диэлектрических потерь так же мал, зато мало и напряжение пробоя. Чаще всего в качестве газообразного изолятора используют воздух,

Жидкие — чаще всего используют в трансформаторах, выключателях, кабелях, вводах для электрической изоляции и в конденсаторах. Причём в трансформаторах эти диэлектрики являются одновременно и охлаждающими жидкостями, а в выключателях − и как дугогасящая среда ( см. Масляный выключатель. В качестве жидких трансформаторное масло

Природные неорганические — наиболее распространённый материал слюда, она обладает гибкостью при сохранении прочности, хорошо расщепляется, что позволяет получить тонкие пластины. Химически стойка и нагревостойка.

Искусственные неорганические: хорошим сопротивлением изоляции обладают малощелочные стёкла, стекловолокно, ситалл, но основным электроизоляционным материалом всё же является фарфор (полевошпатовая керамика). Эта керамика широко используется для изоляторов токонесущих проводов высокого напряжения, Для других более узких задач используется керамика — форстеритовая, глинозёмистая, кордиеритовая и т. д.

Естественные органические: в последнее время в связи с расширением производства синтетических электроизоляционных материалов их применение сокращается. Выделить можно следующие — целлюлоза, парафин, пек, каучук, янтарь и другие природные смолы, из жидких - касторовое масло.

Синтетические органические: большая часть данного материала приходится на долю высокомолекулярных химических соединений — пластмасс, а т.ж. эластомеров ( см.Эластомеры ). Существуют т.ж. синтетические диэлектрические жидкости ( см. Совтол ).

Наши рекомендации