Струнные и стержневые преобразователи

Струнные и стержневые (вибрационно-частотные) преобразователи являются разновидностью частотных преобразователей с механическим резонансом.

В этих преобразователях чувствительным элементом служит плоская или круглая струна – струнные преобразователи, или балочка прямоугольного сечения, изготовленная за одно целое с упругим элементом, – стержневые преобразователи.

Работа струнных механических резонаторов основана на использовании изменения частоты поперечных колебаний струны в зависимости от ее натяжения. Связь частоты поперечных колебаний струны с величиной нормальных механических напряжений в ней определяется известной зависимостью

Струнные и стержневые преобразователи - student2.ru (2.9)

где f – частота собственных колебаний струны; l – длина струны; σ – механические напряжения в струне; ρ – плотность материала струны.

Эту зависимость следует рассматривать лишь как первое приближение, так как она не учитывает изгибной жесткости струны и влияния заделки.

Естественной входной величиной струнных и стержневых преобразователей является сила, причем в подавляющем большинстве случаев струна работает в режиме вынужденных деформаций. Для осуществления такого режима нужно, чтобы жесткость упругого элемента и всей механической цепи, замкнутой на струну, была бы значительно выше жесткости струны. При выполнении этого условия струна осуществляет два последовательных преобразования: силы в деформацию и деформации в частоту.

Стабильность функции преобразования струнного резонатора в первую очередь определяется качеством крепления предварительно натянутой струны к упругому элементу. На сегодня лучшим способом крепления ленточных струн (рис. 2.14), а именно такие струны используются в современных датчиках, является зажим между хорошо обработанными о подогнанными параллельными плоскостями. Струна 1 в месте закрепления переходит в широкую лопаточку, которая закрепляется на плоскости упора 4 с помощью прижимной планки 3 и двух винтов 2 [12].

 
  Струнные и стержневые преобразователи - student2.ru

Струнные резонаторы с одной струной имеют нелинейность функции преобразования порядка 3…5% на 10% девиации частоты и существенную температурную погрешность. В дифференциальных струнных преобразователях эти недостатки теоретически можно свести к нулю. Конструкция упругого элемента дифференциального преобразователя предусматривает крепление одинаковых струн, причем под воздействием деформации частота собственных колебаний одной струны увеличивается, а частота другой уменьшается.

 
  Струнные и стержневые преобразователи - student2.ru

В качестве примера на рис. 2.15 приведен мембранный упругий элемент датчика силы с двумя струнами. Упругий элемент выполнен в виде круглой мембраны 1, двух верхних 2 и двух нижних 6 упоров, на которых закреплены пружинными планками 5 и винтами предварительно натянутые одинаковые стальные струны 3.

Струны расположены взаимно перпендикулярно друг другу, что позволяет уменьшить погрешность при приложении усилия под углом к оси преобразователя. Через стержень измеряемое усилие F передается на упругий элемент, при этом мембрана прогибается, в результате чего верхние и нижние упоры разворачиваются. Натяжение верхней струны уменьшается, а натяжение нижней увеличивается, что вызывает изменение частоты собственных колебаний струн на одно и то же значение, но с разными знаками.

Как уже отмечалось, стабильность характеристик струнного резонатора в первую очередь определяется качеством крепления струны.

 
  Струнные и стержневые преобразователи - student2.ru

Кардинальное решение проблемы крепления, сводящееся к отказу от всякого крепления как такового, предложено Л.Г. Эткиным [13]. Роль резонатора в этих конструкциях выполняет вместо струны тонкая (доли миллиметра) стальная пластинка, изготовленная за одно целое с упругим элементом из одной заготовки (рис. 2.16).

Начальное напряжение в такой конструкции отсутствует, и начальная частота целиком определяется упругими свойствами пластинки. Под действием приложенной силы упругий элемент деформируется и пластина растягивается, при этом повышается частота собственных колебаний. Датчик с такими преобразователями известны как стержневые или вибрационно-частотные.

Несколько конструкций упругих элементов стержневых датчиков представлено на рис. 2.17 [79]. Кольцевые упругие элементы предназначены для датчиков силы и давления, а упругий элемент мембранной конструкции используется только в датчиках давления.

 
  Струнные и стержневые преобразователи - student2.ru

Датчики со стержневыми преобразователями в настоящее время применяются как высокочастотные измерители статических и медленноменяющихся давлений, усилий и крутящих моментов. Упругие элементы серийных датчиков изготавливаются из стали 35ХГСА, колеблющиеся перемычки имеют начальную частоту 3000 и 6000 Гц при девиации частоты в пределах 25…30 %.

Механические резонаторы, как правило, используются в частотных датчиках в режиме свободных колебаний или в автоколебательном режиме. Возбуждение колебаний в резонаторах осуществляется двумя методами: электромагнитным, при котором происходит взаимодействие струны или перемычки из ферромагнитной стали и переменного магнитного потока, создаваемого электромагнитным возбудителем; электродинамическим, при котором происходит взаимодействие переменного тока, протекающего через струну из диамагнитного материала, и магнитного потока постоянного магнита. Электромагнитное возбуждение получило больше распространение, тем более что для стержневых преобразователей это единственный способ, так как нельзя электрически изолировать перемычку от упругого элемента.

 
  Струнные и стержневые преобразователи - student2.ru

Одна из возможных конструкций электромагнитных возбудителей показана на рис. 2.18. Возбудитель расположен с зазором δ < 1 мм от струны или перемычки 1 и состоит из постоянного магнита 2, катушки 3 и магнитопровода 4. При прохождении электрического импульса запроса по катушке магнитное поле увеличивается и струна притягивается к магниту. По окончании импульса запроса струна начинается колебаться с частотой собственных колебаний.

 
  Струнные и стержневые преобразователи - student2.ru

Структурная схема частотного преобразователя с резонатором, работающим в режиме свободных колебаний, дана на рис. 2.19. Измеряемая величина ХН.ЭЛ. преобразуется упругим элементом в деформацию, от которой зависит частота собственных колебаний механического резонатора. Колебания в резонаторе возбуждаются с помощью возбудителя, на вход которого подается импульс запроса от измерительного устройства. Для преобразования энергии возбужденных механических колебаний резонатора в электрическую энергию используется специальный электромагнитный или индуктивный преобразователь-приемник. Сигнал с выхода приемника в виде затухающих колебаний усиливается и поступает на выход частотного преобразователя.

В ряде случаев один и тот же электромеханический преобразователь, например электромагнитный преобразователь на рис. 2.18, используется в обратимом режиме в качестве возбудителя и приемника. Тогда для связи с датчиком достаточно двухпроводной линии.

Частотные преобразователи с механическим резонатором, работающим в автоколебательном режиме, строятся по структурной схеме, представленной на рис. 2.20.

 
  Струнные и стержневые преобразователи - student2.ru

Резонатор получает энергию от возбудителя, на вход которого поступает сигнал с выхода усилителя. Вход усилителя в свою очередь связан с выходом приемника, преобразующего колебания того же резонатора. Самовозбуждение колебаний в такой замкнутой системе происходит в том случае, если ее коэффициент передачи (в разомкнутом виде) больше единицы, а суммарный фазовый сдвиг всех звеньев равен нулю или целому числу периодов колебаний. Поэтому при использовании усилителя с фазовым сдвигом, близким к нулю, и с достаточно большим коэффициентом усиления самовозбуждение системы произойдет точно на частоте. Существенным положительным свойством этого режима работы является простота схемной реализации и непрерывность преобразования.

Погрешности частотных преобразователей с управляемыми механическими резонаторами состоят из трех составляющих [11].

Первая составляющая – это погрешность преобразования измеряемой величины в промежуточную величину – деформацию, от которой непосредственно зависит собственная частота резонатора. Эта погрешность целиком определяется свойствами упругого элемента и входным преобразователем, если он имеется.

Вторая составляющая появляется из-за того, что собственная частота резонатора зависит не только от деформации, но и от внешних влияющих факторов, в основном от температуры, и от влияния заделки в струнных резонаторах. Сюда же следует отнести и погрешность изменения собственной частоты при изменении амплитуды колебаний.

Третья составляющая погрешности связана с тем, что возбуждаемые в резонаторе колебания имеют частоту, не точно совпадающую с частотой собственных колебаний резонатора. При работе в автоколебательном режиме величина этой составляющей зависит от фазовых характеристик отдельных элементов частотного преобразователя, а в режиме свободных колебаний эта составляющая погрешности отсутствует.

Характерная особенность частотных преобразователей с механическими резонаторами заключается в том, что амплитудные погрешности возбудителя, приемника и усилителя не влияют непосредственно на погрешность преобразователя.

Наши рекомендации