ПНИ индикаторы типов ИНЦ02А-1/7, КИПЦ02A-1 /7КЛ, ИПЦ02Б-1/7КЛ. КИПЦ021) -1/7КЛ; КЗЦ и ККЦ ключи типа 1HT251 подключения свотодиодов зеленого и красного цветов свечения соответственно
Таблица 32 Таблица истинности микросхем К514ИД1, К514ИД2, 514ИД1, 514ИД2
В х од | Выход | Символ | |||||||||||
20 | 2' | 22 | 23 | г | л | в | с | D | Е | F | G | ||
Выводы микросхемы | |||||||||||||
t | |||||||||||||
I | |||||||||||||
] | I | ||||||||||||
«бланк» | |||||||||||||
X | X | X | X | ||||||||||
Примечания: 1. Для входов микросхем 514ИД1, 2:1 — U'вх ; 0 — U0вх ; X — безразличная комбинация входных сигналов (U1вх или U0вх).
2. Для выходов микросхем: I — I1вых для 514ИД1, I0вых для 514ИД2; 0 — I°вых для 514ИД1, Iвых для 514ИД2.
3. Г — вход ИМС при низком уровне сигнала, на котором обеспечивается гашение всех сегментов индикатора.
Полученная от источника в виде двоично-десятичного кода информация запоминается в устройствах памяти при подаче сигнала высокого логического уровня «Разрешение записи» на соответствующие входы микросхем.
Рис. 3.15. Принципиальная схема преобразования и индикации информации на ППИ с общим анодом при использовании дешифратора типа 514ПР1
Кроме монохромных семисегментных индикаторов разработан ряд индикаторов с двумя цветами свечения. Эти индикаторы имеют восемь катодных выводов (по одному на каждый сегмент и на децимальную точку) и два анодных вывода, каждый из которых объединяет аноды сегментов красного и зеленого цветов свечения соответственно. Для управления такими индикаторами (ИПЦ02А-1/7КЛ, КИПЦ02А-1/7КЛ, ИПЦ02Б-1/7КЛ, КИПЦ02Б-1/7КЛ) могут быть использованы дешифраторы типов 514ИД2 и К514ИД2, как это показано на рис. 3.14. Замыкание цепи прохождения тока одним из ключей вызовет свечение сегмента зеленого или красного цвета свечения [17].
Для использования дешифраторов в устройствах отображения информации необходимо строгое- соответствие входных кодов для микросхем-дешифраторов их выходным кодам и позиционному (в соответствии с рис. 3.5) положению сегментов в индикаторе. Эти данные приведены в табл. 3.2.
Кроме указанных микросхем для управления индикаторами с общим анодом могут быть использованы также дешифраторы двоично-десятичного кода в позиционный — ИМС 514ПР1. Эта микросхема содержит в своем составе кроме собственно дешифратора ДДК также устройства памяти кода информации (на 4 бита) и формирователи токов сегментов. На рис. 3.15 представлена аппаратурная реализация схемы управления индикаторов с общим анодом (в данном случае 3ЛС324Б1) с применением дешифратора 514ПР1. В качестве устройства памяти децимальной точки может служить микросхема К155ИР1 или аналогичная ей по функциональным возможностям (например, 134ИР1).
Запись информации в ИМС 514ПР1 производится при одновременной подаче на соответствующие ее входы кода данных и сигнала «Разрешение записи».
Временной интервал между фронтами приходящих на входы 2, 11, 12, 13, 14 информационных сигналов и фронтом логической единицы, поступающей на вывод 5 микросхемы для записи информации в регистр памяти, не должен превышать 50 не;
временной интервал между срезами информационных сигналов, поступающих на входы, и фронтов сигнала разрешения записи на входе 5 также не должен превышать 50 не.
При использовании ИМС 514ПР1 предельно допустимое значение напряжения индикации зависит от температуры окружающей среды и в диапазоне от 35 до 70° С определяется по формуле Uинд.маК1 = 3,7 — (Токр.ср — 35) -0,011, где Гокр.ср — температура окружающей среды в °С. При 7OKpq, = 35°С UН11дмакг = = 3,7 В.
Рис. 3.16. Схемы входных (а) и выходных (6) каскадов ИМС 514ПР1
Выходные и входные каскады микросхемы представлены на рис. 3.16. Таблица истинности ИМС 514ПР1 (табл. 3.3) аналогична таблице истинности микросхем 514ИД2 и К514ИД2 только в части дешифрации цифровых значений от 0 до 9. При проектировании ИМС 514ПР1 были учтены запросы разработчиков устройств отображения информации и вместо знаков позиций 11 — 15 таблицы истинности микросхем 514ИД1. К514ИД1, 514ИД2, К514ИД2 введена дешифрация знака «минус» и букв С, Я, Р, L.
Для управления семисегментными индикаторами с общим катодом зеленого, красного и желтого цветов свечения могут быть использованы также микросхемы типа 514ИД4А, Б, В. Схема подключения дешифратора к индикатору с общим катодом приведена на рис. 3.17.
Рис. 3.17. Схема подключения дешифратора 514ИД4А, Б, В к цифровым индикаторам с общим катодом: D1, дешифратор ДДК (514ИД4A, Б. В). 1-7 — информационные входи дешифратора; Н — семисегментный индикатор с общим катодом
Таблица 3.3. Таблица истинности ИМС 514ПР1
Вход | Выход | Символ | |||||||||||
20 | 2' | 22 | 23 | Р | Г | А | B | C | D | E | F | G | |
Выводы микросхемы | |||||||||||||
] | 1 0 | ||||||||||||
] | |||||||||||||
— | |||||||||||||
«бланк» | |||||||||||||
X | X | X | X | X | «бланк» | ||||||||
X | X | X | X | X X | X X | X X | X X | X X | X X | X X | XX | ||
X | X | X | X | «бланк» |
Примечания: 1. Для входа микросхем: 1 — U1вх; 0 — U0вых.
2. Для выхода микросхем: 1 — I1ВЫХ; 0 — I0ВЫХ.
3. X — безразличная комбинация входных сигналов (U1вх; U0вх.).
4. X X — сохраняющийся символ на выходе, существовавший до подачи U1вх на вход Р.
Таблица истинности этих ИМС (табл. 3.4) несколько отличается от таблицы истинности ранее приведенных ИМС: в первой строке обозначений входов и выходов ИМС проставлены наименования выполняемых функций в соответствии с техническими условиями на микросхемы, во второй строке — их стандартизованные обозначения.
Выходные токи ИМС зависят от температуры окружающей среды. Данные об этом представлены в табл. 3.5.
Таблица 3.4. Таблица истинности ИМС 514ИД4А, Б, В
Вход | Выход | Символ | |||||||||||
X1 | X2 | X3 | X4 | X5 | X6, | YA | YB | YC | YD | YE | YF | YG | |
20 | 21 | 22 | 23 | Г | Р | A | В | С | D | E | F | G | |
Выводы микросхемы | |||||||||||||
1 1 | |||||||||||||
1 0 | (J | l | |||||||||||
(1 | (J | f) | |||||||||||
X | X | X | X | «бланк» |
Примечания: 1 Свечению сегментов индикатора соответствуют выходные напряжения высокого уровня, выходные каскады работают в режиме источника тока.
2. Знаку X соответствует безразличное состояние логического уровня входного напряжения.
3. X6 вход управления «памятью». При наличии на входе X6 напряжения высокого уровня информационные входы ИМС отключаются и схема запоминает предыдущую информацию до момента снятия со входа X6 напряжения высокого уровня.
1. X5 - вход ИМС, высокий уровень напряжения на котором дешифруется отсутствием свечения сегментов индикатора при любых сочетаниях логических уровней на входах микросхемы.
Таблица 3.5. Значения выходного тока высокого уровня ИМС 514ИД4А, Б, В при различной температуре окружающей среды
Uвых, В | Значение выходного тока, мА, при температуре, ° С | ||||||||
514ИД4А | 514ИД4Б | 514ИД4В | |||||||
— 60 | +25 | +85 | — 60 | +25 | +85 | — 60 | +25 | +85 | |
Не более 1 ,7 | 26 2 | ||||||||
Не менее 3,0 | 14 1 |
Микросхема 533ИД18 также может быть использована в качестве дешифратора двоично-десятичного кода в позиционный код при управлении одноразрядными индикаторами с общим анодом в устройствах отображения информации. Таблица истинности ИМС 533ИД18 приведена ниже (табл. 3.6).
Микросхема работает в одном из четырех режимов: 1 — дешифрация знаков при выполнении функций от 0 до 15 табл. 3.6; 2 — 4 режимы — выполнение функций BI/RBO, RBI, LT соответственно.
Режим 1.Режим непосредственной дешифрации. На входах LT, BI/RBO, RBI — высокий уровень. Логические уровни входов VI, V2, V4, V8 — обеспечивают на выходах Q1 — Q7 состояния уровней для индикации на ППИ с общим анодом указанных в табл. 3.6 знаков.
Режим 2. Режим «закрытых входов». На выводе BI/RBO — низкий уровень. Все выходы находятся в выключенном состоянии, обеспечивая «бланк», т. е. выключенное состояние всех сегментов индикатора.
Режим. 3. Режим «без нуля». Если на входах LT= 1, RBI = Q, то вывод BI/RBO — в режиме 3 является выходом. При VI = — V2 = V4 = V8 = Q «О» не дешифруется. Все выходы переходят в закрытое состояние, т. е. Q1-Q7=l, что соответствует индикации «бланка». На выходе BI/RBO — низкий уровень. Весь остальной набор состояний VI - V8 дешифруется аналогично режиму 1.
Режим 4. Режим контроля индикатора. На выводах ИМС L7 = 0, Bl/RBO=1. Независимо от состояния входов VI — V8 на выходах Q1 — Q7 — низкий уровень, обеспечивающий свечение «8» на индикаторе.
При подаче на вход ИМС двоично-десятичного кода дешифруются цифры от 0 до 9, при подаче двоичного кода — знаки символов функций от 0 до 15.
При использовании ИМС 533ИД18 в качестве дешифратора ДДК в ПК необходимы как минимум два режима ее работы: дешифрации и контроля (режимы 1 и 4).
Для управления цифровыми индикаторами с общими анодами разработана также микросхема К514ПП1. Таблица истинности микросхемы представлена в табл. 3.7. В качестве выходного элемента использован ключ с разомкнутым коллектором. Максимальный выходной ток Iвых. макс= 12 мА. При подключении индикаторов к выходам ИМС последние нужно защищать от чрезмерного втекающего тока токоограничивающими резисторами. Расчет сопротивлений резисторов приведен выше.
Таблица 3.6. Таблица истинности ИМС 533ИД18
Обозначение теста | Вход | LT | Вход -выход BI/RBO | Выход | Символ | ||||||||||
V1 | V2 | V4 | V8 | RBI | Ql | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | ||||
20 | 21 | 22 | 23 | А | В | С | D | Е | F | G | |||||
Вывод микросхемы | |||||||||||||||
X | |||||||||||||||
X | |||||||||||||||
X | |||||||||||||||
X | |||||||||||||||
X | ] | ||||||||||||||
X | |||||||||||||||
X | |||||||||||||||
X | |||||||||||||||
X | |||||||||||||||
X | |||||||||||||||
X | I | ||||||||||||||
X | |||||||||||||||
X | Х | ||||||||||||||
l | X | X | «бланк.» | ||||||||||||
HI/RHO | X | X | X | X | X | X | «бланк.» | ||||||||
R8I | «бланк» | ||||||||||||||
LТ | X | X | X | X | X |
Примечании: 1. Свечению сегментов индикатора соответствует выходное напряжение низкого уровня.
2. Х - безразличное состояние логических уровней на входах ИМС. 3 B1 /RB0 вывод является выходом только в коде RBI
Таблица 3.7. Таблица истинности ИМС К514ПП1
Номер теста | Вход | Выход | Символ | ||||||||||
X1 | X2 | X3 | X4 | X5 | YA | YB | YC | YD | YE | YF | YG | ||
20 | 21 | 22 | 23 | K | A | B | C | D | E | F | G | ||
Номер вывода микросхемы | |||||||||||||
I | |||||||||||||
«бланк» | |||||||||||||
X | X | X | X |
Примечании: 1. Свечении сегментов индикатора соответствует состоянию логического нуля на выходе микросхемы.
2. Знаку X соответствует безразличное состояние на входах X1-X4.
Рис. 3.18. Схемы входных (а) и выходных (б) каскадов ИМС К514ПП1
Рис. 3.19. Схема выходных каскадов ИМС 133ПП4
Схемы входных и выходных каскадов микросхемы приведены на рис. 3.18.
Для управлении семисегментпыми индикаторами с общим анодом может быть использована также микросхема 133ПГ14. Принципиальная схема входных каскадов ее аналогична схеме входных каскадов ИМС КМ4ИД1, К514ИД2, 514ИД1, 514ИД2. Схема выходных каскадов приведена на рис. 3.19. Нумерация выводов и их соответствие выполняемым функциям указанных микросхем также унифицированы.
Особое место среди выпускаемых промышленностью семи-сегментных индикаторов занимают микросхемы-индикаторы (индикаторы со встроенными схемами управления). К ним ел носятся полупроводниковые индикаторы типов К490ИП1, 490ИП1, К490ЙП2 и 490ИП2.
Рис. 3.20. Схема последовательного включения десятичных счетчиков индикаторов К490ИП1 и 490ИП1:
1 — информационный вход устройства индикации; 2 — группа входов по управлению децимальными точками каждого из разрядов; 3 — входы счетчиков индикаторов по установке нуля; 4 — группа входов гашения для каждого из разрядов
Индикаторы К490ИП1 и 490ИП1 представляют собой десятичные счетчики-индикаторы с децимальной точкой. Для их использования в качестве индикаторов в устройствах отображения информации на несколько разрядов необходимо кодовый выход младшего разряда устройства (вывод 4 последнего индикатора) соединить со входом старшего разряда (вывод 7 следующего по старшинству разряда индикатора).
На рис. 3.20 представлена схема подключения десятичных счетчиков-индикаторов К490ИП1 и 490ИП1 для использования в качестве N-разрядного индикатора цифровых значений параметра. Младшим разрядом устройства индикации является счетчик-индикатор DN, старшим разрядом устройства счетчик-индикатор di. Выход младшего разряда (вывод 4 Dv) устройства индикации соединен со счетным входом предыдущего разряда счетчика (вывод 7 DN ,), вывод 4 которого соединен со входом следующего по старшинству разряда и т. д. до соединения выхода предыдущего разряда со входом старшего разряда устройства (вывод 7D1).
Вход гашения (вывод 2) позволяет при записи информации в счетчик микросхемы не индицировать вносимую в этот момент информацию. Установка нуля прибора осуществляется по выводу 6, управление децимальной точкой — но выводу 9 прибора.
Рис. 3.21. Схемы входного (и) и выходного (б) каскадов счетчиков-индикаторов КШОИП1 и 490ИП1
Таблица 38. Соответствие индицируемых знаков состоянию логических уровней на входах приборов К490ИП2, 490И П2
Вход | Символ | |||||
20 | 21 | 22 | 23 | Г | Р | |
Bыводы микросхемы | ||||||
I | ||||||
X | X | X | X | «бланк» | ||
X | X | X | X | X | «бланк» |
Примечания: 1. X — соответствует безразличному значению управляющих сигналов на входах прибора.
2. Гашение десятичной точки и индикатора происходит при подаче логического нуля на выводы 12 и 4 соответственно.
3. Запись входной информации происходит при подаче логической единицы на вывод 3 прибора. При подаче логического нуля на вывод 3 форма знака соответствует информации на выводах 2, И, 13, 14.
Схемы входного (а) и выходного (б) каскадов представлены на рис. 3.21.
Высота знака индикатора 490ИП1 составляет 2,5 мм. В комплекте с прибором поставляется линзовая крышка, которая позволяет увеличить видимый размер индуцируемого знака. Цвет свечения индикатора — красный.
Приборы К490ИП2 и 490ИП2 состоят из регистра памяти, преобразователя кодов из двоичного четырехразрядного в семи-сегментный и индикатора цифр и знаков.
Соответствие индицируемых знаков состоянию логических сигналов на входе приборов представлено в табл. 3.8.
3.3. РЕГУЛИРОВАНИЕ ЯРКОСТИ СВЕЧЕНИЯ ИНДИКАТОРОВ ПРИ УПРАВЛЕНИИ В СТАТИЧЕСКОМ РЕЖИМЕ
Особенностью использования ПНИ, как и любого активного (светоизлучающего) индикатора, является зависимость качества восприятия информации от уровня яркости внешней освещен-ности. В частности, в помещениях с рассеянным спокойным освещением индикатор в номинальных режимах работы даст дискомфорт считывания информации из-за чрезвычайно высокого яркостного контраста; в помещениях же с высокими уровнями внешней освещенности (от 10000 до 100000 лк) яркостного контраста для уверенного считывания информации даже при максимуме светоотдачи без применения специальных мер будет недостаточно. Для устройств, работающих в широком диапазоне внешней освещенности, необходимо решать обе эти задачи.
Снижение яркостного контраста при работе индикатора в помещениях с низким уровнем внешней освещенности достигается путем регулирования (уменьшения) яркости свечения индикаторов.
Это регулирование может быть осуществлено различными способами. В частности, в условиях ровного яркого освещения, например в вычислительных центрах, допустим вариант регулирования яркости за счет изменения напряжения питания ППИ, а следовательно, и амплитуды проходящего через светодиоды тока. Регулирующим элементом может служить переменный резистор, вынесенный на лицевую панель прибора. Этот резистор является элементом делителя напряжения в блоке питания, осуществляющего регулировку выходного напряжения блока, используемого для питания ППИ. Вариант прост в исполнении, однако может быть использован только в помещениях с достаточно ровным ярким освещением, не требующим регулирования яркости ППИ до минимума.
Это объясняется тем, что при малых значениях протекающего через светящийся элемент тока Iпр наблюдается значительный разброс яркости их свечения Lv (рис. 3.22). При снижении до определенного минимума протекающего через светодиоды тока разброс яркости свечения ППИ значительно увеличивается (ДLv2>ДLv1 при I1<I2).
При невысоких уровнях яркостей, т. е. при работе в ночное время, зрительное восприятие неравномерности свечения будет усугубляться тем, что в этих условиях чувствительность глаза выше, поэтому и различная яркость проявляется сильнее. Следовательно, регулирование яркости свечения индикаторов методом изменения напряжения на нижних пределах регулирования создаст дискомфорт при считывании информации из-за разноярко-сти свечения светодиодов.
Необходимо учесть, что конструкция ППИ не позволяет их использовать без светофильтров, так как светлая пластмасса рассеивателя светопроводов точек и сегментов ППИ на черном фоне его корпуса даже в выключенном состоянии выделяется достаточно контрастно. Высокий контраст элементов индикатора при определенных условиях освещенности или дефицита времени могут вызвать пропуски и ошибки при считывании информации. Светофильтры же, обеспечивающие цветовой и яркостный контрасты индицируемой информации, снижают яркость свечения на 15 — 20% и более в зависимости от типа светофильтра. Таким образом, с одной стороны, для обеспечения комфортности считывания информации в затемненном помещении необходимо снижение тока через светодиоды цифрового индикатора до значения, снимающего слепящее действие наиболее ярких элементов, а с другой — явление разброса яркости свечения с одновременным использованием светофильтров приводит к полной потере светимости части светодиодов, имеющих более низкие светоизлучающие характеристики.
Рис. 3.22. Зависимость яркости свечения светодиодов от прямого тока
Рис. 3.23. Структурная схема ШИМ регулирования яркости свечения цифровых индикаторов:
1 - генератор широтно-модулированны.х импульсов, у которого ти =f(Rя): 2 дешифратор ДДК r семиразрядный позиционный код ППИ; 3 информационные входы дешифратора; 4 семисегментный индикатор; R1-R7токоограничивающие резисторы
Поэтому способ регулирования яркости свечения индикаторов снижением напряжения питания, приемлемый для приборов, размещаемых в помещениях с постоянным средним и ярким уровнем внешней освещенности, неприемлем для устройств отображения информации, размещаемых в помещениях и на объектах с широким д