Активные потери в токоведущих частях аппаратов

При работе электрических аппаратов имеют место потери электроэнергии в виде тепла, которое расходуется на нагрев электрических аппаратов и рассеивается в окружающей среде.

В результате нагрева электрических аппаратов происходит их старение. При недопустимых значениях нагрева происходит преждевременный выход из строя не только отдельных элементов, но и аппаратов в целом.

Например, при возрастании допустимой температуры лишь на 8ºС, срок службы изоляции сокращается в 2 раза. При увеличении прочность меди снижается на 40%.

Поэтому для того, чтобы электрический аппарат свои нормативные часы, необходимо обеспечить его допустимый тепловой режим работы.

В аппаратах постоянного тока нагрев происходит только за счет потерь в активном сопротивлении. Энергия, выделяющаяся в проводник, равна:

Активные потери в токоведущих частях аппаратов - student2.ru

При переменном токе активное сопротивление зависит от поверхностного эффекта, который резко возрастает с увеличением частоты тока, сечения проводника

Активные потери в токоведущих частях аппаратов - student2.ru

Величина Кп находится в пределах от 1 до 3 – х.

При переменном токе появляются также активные потери в ферромагнитных деталях аппаратов, расположенных в переменном магнитном поле. Возникают активные потери от вихревых токов и потери на перемагничивание за счет гистерезиса. Полные потери в магнитопроводе определяются:

Активные потери в токоведущих частях аппаратов - student2.ru

Поверхностный эффект.

Активные потери в токоведущих частях аппаратов - student2.ru На рис. 3.23 показаны магнитные линии в плоскости поперечного сечения уединенного провода с током. Представим себе этот провод в виде совокупности нитей, параллельных его оси. Чем ближе нить расположена к оси провода, тем с большим числом магнитных линий она сцеплена.

При периодическом изменении тока изменяется магнитное поле и в нитях наводятся ЭДС, противодействующие изменениям тока. Это противодействие тем значительнее, чем больше ЭДС (чем больше магнитных линий сцеплено с нитью), т. е. чем ближе нить провода расположена к оси провода. В результате плотность тока в различных точках поперечного сечения получается неодинаковой: наибольшая на периферии провода и наименьшая на его оси.
Рассмотренное явление концентрации переменного тока в поверхностном слое проводника называют поверхностным эффектом. Резкость проявления его возрастает с увеличением частоты f, диаметра провода d, относительной магнитной проницаемости μ и удельной проводимости s материала провода. Это объясняется тем, что увеличение μ приводит к возрастанию магнитного поля внутри провода, увеличение d создает большую разницу в сцеплениях с магнитными линиями осевых и периферийных нитей провода, а повышение f и s увеличивает роль наводимых в нитях ЭДС, противодействующих изменению тока в них. Так, в предельном случае s =∞ весь ток должен концентрироваться на поверхности провода в бесконечно тонком слое.

Вследствие поверхностного эффекта поперечное сечение провода при переменном токе используется хуже, чем при постоянном токе. При одинаковых значениях переменного и постоянного токов (равенстве значения постоянного тока и действующего значения переменного тока) тепловые потери больше при переменном токе. Поэтому сопротивление провода переменному току (активное сопротивление) выше, чем сопротивление провода постоянному току.
Другим следствием поверхностного эффекта является некоторое уменьшение индуктивности цепи ввиду ослабления магнитного поля во внутренней части провода. В предельном теоретическом случае ток концентрируется на поверхности провода в бесконечно тонком слое и магнитное поле внутри провода отсутствует.
При высоких частотах переменного тока внутренняя часть провода практически не используется, поэтому часто применяют пустотелые провода в форме труб. Применяют также высокочастотные многожильные провода. Они состоят из тонких изолированных друг от друга жил, перевитых таким образом, чтобы каждая из жил поочередно занимала в поперечном сечении провода различные положения от его оси до периферии. При такой конструкции каждая из жил находится в одинаковых условиях и токи в жилах равны друг другу. Кроме того, в пределах каждой жилы вследствие малого ее диаметра поверхностный эффект проявляется нерезко и плотность тока по сечению жилы различается незначительно. При очень больших частотах емкостная проводимость между жилами становится настолько значительной, что жилы оказываются как бы замкнутыми между собой, и поверхностный эффект проявляется так же, как и в сплошном проводе. Кроме того, становятся весьма заметными потери энергии в изоляции между жилами. Поэтому при частотах выше 106 Гц многожильные провода не применяются. При частоте 50 Гц поверхностный эффект заметен только в проводах (шинах) достаточно большого поперечного сечения. В медных проводах с диаметром меньше 1 см при частоте 50 Гц увеличением сопротивления вследствие поверхностного эффекта практически можно пренебречь.

Эффект близости

Активные потери в токоведущих частях аппаратов - student2.ru На распределение переменного тока в проводе оказывают влияние токи соседних проводов. Неодинаковая плотность тока в проводе получается из-за влияния токов в соседних проводах. Это явление называют эффектом близости. Эффект близости вызывается вихревыми токами, индуцированными в проводе вследствие влияния переменного магнитного поля других проводников, находящихся рядом. На рис. 6.3 в упрощенном виде показано влияние поля соседних проводников на данный провод. На рис. 6.3, а, показано, что данный провод с уходящим от читателя током пересекается синусоидальным во времени магнитным полем одной частоты с амплитудой Вт. Как показано на схематических картинах магнитных полей двух проводов с токами (рис. 3.24), различные части сечений проводов сцеплены с неодинаковым числом магнитных линий. На основании рассуждений, аналогичных приведенным для одиночного провода, можно прийти к заключению, что наибольшая плотность тока будет в тех частях сечения проводов, которые сцеплены с наименьшим числом магнитных линий.
Если токи в проводах направлены одинаково (рис. 3.24, а), наибольшая плотность тока наблюдается в наиболее удаленных друг от друга частях сечений; при различных направлениях токов (рис. 3.24, б) наибольшая плотность тока получается в наиболее близких друг к другу частях сечений проводов. Области наибольших плотностей тока отмечены на рис. 3.24 толстыми линиями. Вызываемая эффектом близости неравномерность распределения тока по сечению проводов приводит к увеличению потерь энергии, к увеличению разницы в сопротивлениях проводов переменному и постоянному токам. Расчеты распределения тока по сечению проводника с учетом поверхностного эффекта или эффекта близости и сопротивления проводника относятся к задачам теории поля.

Наши рекомендации