Физические основы электрокардиографии

 
Живые ткани являются источником электрических потенциалов (биопотенциалов). Регистрация биопотенциалов тканей и органов с диагностической целью получила название электрографии. Такой общий термин употребляется сравнительно редко, более распространены конкретные названия соответствующих диагностических методов: электрокардиография (ЭКГ) – регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении, электромиография (ЭМГ) – метод регистрации биоэлектрической активности мышц, электроэнцефалография (ЭЭГ) – метод регистрации биоэлектрической активности головного мозга и др. В большинстве случаев биопотенциалы снимаются электродами не непосредственно с органа (сердца, головного мозга), а с других, соседних тканей, в которых электрические поля этим органом создаются.

Вопрос №21

Эйнтховена Теория

(W. Einthoven) - теория формирования электрокардиограммы, согласно которой сердце рассматривается как бесконечно малый диполь, расположенный в центре треугольника Эйнтховена и непрерывно меняющий величину и направление вектора электродвижущей силы; проекции вектора на каждую из сторон треугольника определяют форму электрокардиограммы в трех стандартных отведениях (с учетом смещения третьего угла на дистальную часть левой голени.

· В электроэнцефалографии кожный потенциал, измеряемый с помощью хлорсеребряного электрода, сравнивают с потенциалом наложенного на эту область электрода. В этом случае биопотенциал количественно измеряется напряжением между электродом и условным нулем (землей).

· Электрокардиография

·

· Детектор лжи и кожногальванический рефлекс (КГР)

· Электрогастрография — метод исследования моторной деятельности желудка

· Электронистагмография (ЭНГ)

· Электромиография (ЭМГ)

· Электрореография (ЭРГ)

· Разработана система диагностики мастита коров по данным уровня биопотенциала точек (БАТ) на коже животного (в поверхностно локализованных биологически активных центрах).

Вопрос №22
ЭЛЕКТРОПРОВОДИМОСТЬ БИОЛОГИЧЕСКИХ ТКАНЕЙ И ЖИДКОСТЕЙ ПРИ ПОСТОЯННОМ ТОКЕ. ЭЛЕКТРИЧЕСКИЙ РАЗРЯД В ГАЗАХ

 
Биологические ткани и органы являются довольно разнородными образованиями с различными электрическими сопротивлениями, которые могут изменяться при действии электрического тока. Это обусловливает трудности измерения электрического сопротивления живых биологических систем. Электропроводимость отдельных участков организма, находящихся между электродами, наложенными непосредственно на поверхность тела, существенно зависит от сопротивления кожи и подкожных слоев. Внутри организма ток распространяется в основном по кровеносным и лимфатическим сосудам, мышцам, оболочкам нервных стволов. Сопротивление кожи в свою очередь определяется ее состоянием: толщиной, возрастом, влажностью и т. п. Электропроводимость тканей и органов зависит от их функционального состояния и, следовательно, может быть использована как диагностический показатель. Так, например, при воспалении, когда клетки набухают, уменьшается сечение межклеточных соединений и увеличивается электрическое сопротивление; физиологические явления, вызывающие потливость, сопровождаются возрастанием электропроводимости кожи и т. д. Газ, состоящий только из нейтральных частиц, является изолятором. Если его ионизировать, то он становится электропроводным. Любое устройство, явление, фактор, способные вызвать ионизацию молекул и атомов газа, называют ионизатором. Им могут быть свет, рентгеновское излучение, пламя, ионизирующее излучение и пр. Электрический заряд в воздухе может образовываться и при распылении в нем полярных жидкостей (баллоэлектрический эффект), т. е. таких жидкостей, молекулы которых имеют постоянный электрический ди-польный момент. Так, например, при дроблении в воздухе вода распадается на заряженные капельки. Знак заряда крупных капель (положительный для жесткой воды) противоположен по знаку заряду мельчайших капель. Более крупные капли сравнительно быстро оседают, и в воздухе остаются отрицательно заряженные частицы воды. Такое явление наблюдается у фонтана. Электропроводимость газа зависит также и от вторичной ионизации. Ионизированный потенциал внутренних электронов значительно выше. В земных условиях воздух практически всегда содержит некоторое количество ионов благодаря природным ионизаторам, главным образом радиоактивным веществам в почве и газах и космическому излучению. Ионы и электроны, находящиеся в воздухе, могут, присоединяясь к нейтральным молекулам и взвешенным частицам, образовать более сложные ионы. Эти ионы в атмосфере называют аэроионами. Они различаются не только знаком, но и массой, их условно делят на легкие (газовые ионы) и тяжелые (взвешенные заряженные частицы – пылинки, частицы дыма и влаги). Тяжелые ионы вредно действуют на организм, легкие и в основном отрицательные аэроионы оказывают благоприятное влияние. Их используют для лечения (аэроионотерапия).




Вопрос №23

В основе любых механизмов лечебного действия высокочастотных колебаний лежит первичное действие их на электрически заряженные частицы (электроны атомы и молекулы) веществ, из которых состоят ткани организма. В действии высокочастотных колебаний различают две основные группы эффектов - тепловой эффект и так называемый специфический эффект.

Тепловой эффект, получаемый под действием высокочастотных колебаний, отличается от теплового эффекта, получаемого другими методами (грелки, укутывания, инфракрасное облучение и др.), рядом существенных преимуществ. Нагревание тканей токами и полями высокой частоты происходит не за счет передачи тепла, подведенного к поверхности тела, а за счет непосредственного выделения теплоты в расположенных внутри тела тканях и органах. Это позволяет в значительной степени исключить теплоизолирующее действие слоя кожи и подкожной жировой клетчатки, а также теплорегуляционное действие системы кровообращения, значительно ослабляющее передачу тепла вглубь с поверхности тела.

Особенностью теплового действия высокочастотных колебаний является то, что количество теплоты, выделяющееся в тех или иных органах и тканях организма, зависит как от параметров колебаний, главным образом частоты, так и от электрических свойств самих тканей. Поэтому, подбирая соответствующим образом частоту колебаний, можно обеспечить в какой-то степени «терма-селективное» действие, т.е. преимущественное выделение тепла в определенных тканях.

Немаловажным преимуществом высокочастотных методов является возможность легко регулировать мощность колебаний, действующих на объект, и соответственно интенсивность теплового эффекта, при некоторых методах возможно и довольно точное измерение этой мощности.

Специфический эффект от действия высокочастотных колебаний, наиболее явно проявляющийся при ультра- и сверхвысоких частотах, заключается в различных внутримолекулярных физико-химических процессах, или структурных перестройках, которые могут изменять функциональное состояние клеток тканей.

В качестве примеров можно указать на выстраивание в цепочки, ориентированные параллельно электрическим силовым линиям, эритроцитов, лейкоцитов и некоторых других клеток и частиц, ориентирование по полю поляризованных боковых ветвей белковых макромолекул и др.

Следует отметить, что механизмы «специфического» действия высокочастотных колебаний изучены еще недостаточно и в ряде случаев имеют характер гипотез, однако многие из них получили не только теоретическое, но и экспериментальное подтверждение.

Для лучшего понимания особенностей действия на организм различных форм энергии высокочастотных колебаний, зависимости от частоты глубины проникновения и распределения поглощенной энергии между тканями и др. необходимо рассмотреть электрические параметры тканей организма.

Вопрос №24

УВЧ терапия — методика физиотерапии, в основе которой лежит воздействие на организм больного высокочастотного магнитного поля с длиной волны 1-10 метров. В ходе взаимодействия испускаемого физиотерапевтическим аппаратом магнитного поля и организма больного формируется магнитное поле ультравысокой частоты. При этом больной ощущает тепловые эффекты воздействия на него данного магнитного поля. Стандартная частота электромагнитных колебаний при данной методике терапии составляет 40,68 МГц.

Данная методика широко применяется в физиотерапии. В основе её эффекта лежит улучшение микроциркуляции в месте воздействия магнитного поля. В результате чего ускоряются процессы репарации и регенерации, уменьшается воспаление. Так же переменное магнитное поле снижает чувствительность рецепторов нервных окончаний, что приводит к снижению интенсивности болевых ощущений.

Терапевтический контур это колебательный контур а) индуктивно связанный с контуром генератора б) колебания, в котором являются вынужденными в) основанный на явлениях резонанса г) все перечисленное д) ничего из перечисленного 026.
Рисунок в лекции

Вопрос №25

КВЧ-терапи́я — биофизическая теория, исследующая механизмы воздействия на живой организм электромагнитного излучения (ЭМИ) миллиметрового диапазона (1 — 10 мм) крайне высокой частоты (30 — 300 ГГц) низкой интенсивности, а также медицинская практика, использующая эффекты указанного воздействия при лечении различных заболеваний.

Электромагнитные волны миллиметрового диапазона обладают низкой проникающей способностью в биологический ткани (0,2 — 0,8 мм), практически полностью поглощаются поверхностными слоями кожи (молекулами воды, гидратированными белками, молекулами коллагена, клетками соединительной ткани), не оказывая при этом теплового воздействия. Таким образом, КВЧ-волны не воздействуют непосредственно на внутренние органы пациента

Микроволновая терапия - это воздействие на ткани организма переменным электромагнитным полем сверхвысокой частоты (СВЧ). Отсюда другое название этого метода лечения – СВЧ-терапия. Для получения электромагнитного поля СВЧ используется вакуумный прибор магнетрон, сочетающий в себе функции электронной лампы и колебательного контура. Источником электронов в магнетроне служит катод. Электрическое поле между катодом и анодом ускоряет движение электронов. Малогабаритный постоянный магнит, которым снабжен магнетрон, создает магнитное поле, направляющее движение электронов. Электромагнитное поле СВЧ подводится к тканям с помощью специальных излучателей направленного действия, которые представляют собой диэлектрические антенны. Излучатели используются по контактной и дистанционной методика воздействия. При дистанционном воздействии аппарат устанавливается в экранированной кабине, таким образом, чтоб излучатель был направлен в сторону наружной стены.

Вопрос №26

1. Природа рентгеновского излучения


Рентгеновское излучение – электромагнитные волны с длинной от 80 до 10–5 нм. Длинноволновое рентгеновское излучение перекрывается коротковолновым УФ излучением, коротковолновое – длинноволновым g-излучением.

Рентгеновское излучение получают в рентгеновских трубках.

Трубка представляет собой стеклянную колбу (с возможно высоким вакуумом: давление в ней порядка 10–6 мм.рт.ст.) с двумя электродами: анодом А и катодом К, к которым приложено высокое напряжение U (несколько тысяч вольт). Катод является источником электронов (за счет явления термоэлектронной эмиссии). Анод – металлический стержень, имеет наклонную поверхность для того, чтобы направлять возникающее рентгеновское излучение под углом к оси трубки. Он изготовляется из хорошо теплопроводящего материала для отвода теплоты, образующейся при бомбардировке электронов. На скошенном торце имеется пластинка из тугоплавкого металла (например, вольфрама).

Сильный разогрев анода обусловлен тем, что основное количество электронов в катодном пучке, попав на анод, испытывает многочисленные столкновения с атомами вещества и передает им большую энергию.

Под действием высокого напряжения электроны, испущенные раскаленной нитью катода, ускоряются до больших энергий. Кинетическая энергия электрона равна mv2/2. Она равна энергии, которую он приобретает, двигаясь в электростатическом поле трубки:

mv2/2 = eU (1)

где m, e – масса и заряд электрона, U – ускоряющее напряжение.

Процессы приводящие к возникновению тормозного рентгеновского излучения обусловлены интенсивным торможением электронов в веществе анода электростатическим полем атомного ядра и атомарных электронов.

Механизм возникновения можно представить следующим образом. Движущиеся электроны – это некоторый ток, образующий свое магнитное поле. Замедление электронов – снижение силы тока и, соответственно, изменение индукции магнитного поля, которое вызовет возникновение переменного электрического поля, т.е. появление электромагнитной волны.

Таким образом, когда заряженная частица влетает в вещество, она тормозится, теряет свою энергию и скорость и излучает электромагнитные волны.

Вопрос №27

Наши рекомендации