Лекция 7. ЭЛЕКТРОБЕЗОПАСНОСТЬ

Лекция 7. ЭЛЕКТРОБЕЗОПАСНОСТЬ

Особенности поражения электрическим током. Электротравматизм

Электрический ток используется в настоящее время во всех сферах деятельности человека, как источник энергии удобный в транспортировке и применении.

При всех преимуществах применения электроэнергии нельзя игнорировать опасность электричества для человека.

Опасность поражения электрическим током усугубляется тем, что:

- во первых, ток не имеет внешних признаков и как правило человек без специальных приборов не может заблаговременно обнаружить грозящую ему опасность;

- во вторых, воздействия тока на человека в большинстве случаев приводит к серьезным нарушениям наиболее важных жизнедеятельных систем, таких как центральная нервная, сердечно-сосудистая и дыхательная, что увеличивает тяжесть поражения;

- в третьих, переменный ток способен вызвать интенсивные судороги мышц, приводящие к не отпускающему эффекту, при котором человек самостоятельно не может освободиться от воздействия тока;

- в четвертых, воздействие тока вызывает у человека резкую реакцию отдергивания, а в ряде случаев и потерю сознания, что при работе на высоте может привести к травмированию в результате падения.

Большинство специалистов и исследователей в области электробезопасности указывают на следующие действия, которые производит электрический ток, проходя через организм человека:

- термическое действие – проявляется в ожогах отдельных участков тела, нагреве до высоких температур внутренних тканей человека, что вызывает в них серьезные функциональные расстройства;

- электролитическое действие – проявляется в разложении органической жидкости, в том числе и крови, что вызывает значительные нарушения их физико-химического состава;

- механическое действие – приводит к разрыву тканей и переломам костей;

- биологическое действие - проявляется в раздражении и возбуждении живых тканей в организме, а также в нарушении внутренних биоэлектрических процессов, присущих нормально действующему организму.

Все многообразие действий электрического тока на организм человека приводит к различным электротравмам.

Электротравма – травма (резкое, внезапное изменение здоровья человека), вызванная воздействием электрического тока или электрической дуги.

Условно все электротравмы можно свести к следующим видам:

Электрический удар.

Приводит к возбуждению живых тканей. Различают несколько степеней тяжести электротравм при электрическом ударе:

- электротравма I степени — судорожное сокращение мышц без потери сознания;

- электротравма II степени — судорожное сокращение мышц с потерей сознания;

- электротравма III степени — потеря сознания и нарушение функций сердечной деятельности или дыхания (не исключено и то и другое);

- электротравма IV степени — клиническая смерть.

2.Электрический ожог.

Электрические ожогивстречаются в 40% случаев и бывают двух видов:

-токовый (контактный) – ток проходит непосредственно через тело человека;

- дуговой–связан с тепловым воздействием электрической дуги.

Ожоги могут быть поверхностными или глубокими, сопровождающимися поражениями не только кожи, но и подкожной ткани, жира, мышц, нервов, костей. В последних случаях, как показывает опыт, заживление ожога идет медленно.

Вследствие значительного сопротивления кожи наблюдаются преимущественно поверхностные ожоги. Однако при большой частоте тока могут иметь место ожоги внутреннего характера, даже без заметного повреждения поверхности кожи.

Различают четыре степени электрических ожогов:

- I степень – покраснение кожи;

- II степень – образование пузырей;

- III степень – обугливание кожи;

- IV степень – обугливание подкожной клетчатки, мышц, сосудов, нервов, костей.

Металлизация кожи.

Пропитывание кожи мельчайшими парообразными или расплавленными частицами металла под влиянием механического или химического воздействия тока. Пораженный участок кожи приобретает жесткую поверхность и своеобразную окраску. В большинстве случаев металлизация излечивается, не оставляя на коже следов.

4. Электрический знак.

Специфические поражения, вызываемые механическими, химическими или их совместными воздействиями тока. Пораженный участок кожи практически безболезнен, вокруг него отсутствуют воспалительные процессы. Со временем он затвердевает, и поверхностные ткани отмирают. Электрознаки обычно быстро излечиваются.

5. Механическое повреждение организма.

Механические повреждениявстречаются в 0,5% случаев и являются следствием резких, непроизвольных сокращений мышц под действием тока, проходящего через тело человека. Механические повреждения возникают при относительно длительном нахождении человека под напряжением до 380 В и представляют собой разрывы сухожилий, кожи, кровеносных сосудов и нервной ткани. Могут иметь место вывихи суставов и, даже, переломы костей.

6. Электроофтальмия.

Поражение глаз ультрафиолетовыми лучами, источником которых является электрическая дуга. В результате электроофтальмии через несколько часов наступает воспалительный процесс.

Таблица 1

Действие электрического тока на организм человека

Сила тока, мА Переменный ток 50 — 60 Гц Постоянный ток
0,6 — 1,5 Начало ощущения - слабый зуд, пощипывание кожи Не ощущается
2 — 3 Ощущение тока распространяется и на запястье руки, слегка сводит руку Не ощущается
5 - 7 Болевые ощущения, судороги в руках 3yд. Ощущение нагревания
8 — 10 Руки с трудом, но еще можно оторвать от электродов. Сильные боли в руках и судороги Усиление нагревания
20 — 25 Руки парализуются мгновенно, оторвать их от электродов невозможно. Очень сильные боли в руках и груди. Затрудняется дыхание Еще большее усиление нагревания, незначительное сокращение мышц рук
50 — 80 Дыхание парализуется. Начало трепетания желудочков сердца Сильное ощущение нагревания. Сокращение мышц рук. Судороги. Затруднение дыхания
90 — 100 Паралич дыхания и фибрилляция через 1-3 с. Паралич дыхания

Причины поражения электрическим током условно можно разделить на следующие группы:

1. Технические: обусловлены несоответствием электроустановок и защитных средств требованиям электробезопасности.

2. Организационно - технические: невыполнение или неполное выполнение организационных или технических мероприятий, несоблюдение правил электробезопасности, несвоевременная замена неисправных электроустановок, использование не проектных электроустановок.

3. Организационно - социальные: нарушение производственной и трудовой дисциплины.

Напряжение

По ГОСТ 12.1.038-82 ССБТ «Предельно допустимые величины напряжений и токов. Электробезопасность». Факторы величины напряжения и время воздействия электрического тока, приведены в таблице 2.

Таблица 2

Время действия, сек. Длительно До 30 0,5 0,2 0,1
Величина тока, мА.
Величина напряжения, В.

Величина тока

Основным фактором, определяющим исход поражения человека электрическим током, является величина протекающего через него тока. Воздействие электрического тока на организм человека до 0,5 мА не ощущается. Человек начинает ощущать воздействие проходящего через него тока величиной 0,6-1,5 мА при промышленной частоте 50 Гц и 5-7 мА постоянного тока. Такие токи принято называть пороговыми ощутимыми.

Пороговый ощутимый ток не вызывает поражения человека. Однако его действие может стать косвенной причиной несчастного случая, поскольку человек, почувствовав воздействие тока, теряет уверенность в своей безопасности (особенно при работах на высоте).

Точные значения безопасного тока не установлены, однако на практике его ограничивают 50 мкА при переменном токе частотой 50 Гц и 100 мкА при постоянном токе.

Увеличение тока сверх порога ощутимых токов вызывает у человека судороги мышц и болезненные ощущения, которые с ростом тока усиливаются.

При переменном токе 10-15 мА при 50 Гц человек не может оторвать рук от электродов, не может самостоятельно разорвать цепь поражающего его тока. Такой ток называют пороговым неотпускающим. При постоянном токе пороговый неотпускающий ток составляет 50-80 мА.

Отпускающим считается ток, значение которого меньше порога неотпускающих токов.

Ток, превышающий пороговый неотпускающий, усиливает болевые раздражения и судорожные сокращения мышц. При токе 50 мА поражаются органы дыхания и сердечно-сосудистая система. Ток величиной 100 мА и более (при 50 Гц), проходя через тело человека, вызывает фибрилляцию сердца, заключающуюся в беспорядочном, хаотическом сокращении и расслаблении мышечных волокон сердца. Такие токи называются фибрилляционными.

Пороговым фибрилляционным током при частоте 50 Гц является ток 100 мА, а при постоянном - 300 мА.

При превышении пороговых фибрилляционных токов останавливается сердце и прекращается кровообращение.

Род и частота тока

Постоянный и переменный токи оказывают различные воздействия на организм главным образом при напряжениях до 500 В. При таких напряжениях степень поражения постоянным током меньше, чем переменным той же величины. Считают, что напряжение 120 В постоянного тока при одинаковых условиях эквивалентно по опасности напряжению 40 В переменного тока промышленной частоты. При напряжении 500В и выше различий в воздействии постоянного и переменного токов практически не наблюдаются.

Исследования показали, что самыми неблагоприятными для человека являются токи промышленной частоты (50Гц). При увеличении частоты (более 50Гц) значения неотпускающего тока возрастает. С уменьшением частоты (от 50Гц до 0) значения неотпускающего тока тоже возрастает и при частоте, равной нулю (постоянный ток – болевой эффект), они становятся больше примерно в три раза.

Значения фибрилляционного тока при частотах 50-100Гц равны, с повышением частоты до 200Гц этот ток возрастает примерно в 2 раза, а при частоте 400Гц – почти в 3,5 раза.

5. Сопротивление тела человека

Основным сопротивлением в цепи тока через тело человека является верхний роговой слой кожи. На разных участках тела он имеет толщину от 0,05 до 0,2 мм; на ладонях и подошвах, утолщаясь, он может образовывать мозоли, т. е. иметь значительную толщину.

Роговой слой обладает относительно высокой механической прочностью, плохо проводит тепло и электричество и служит как бы защитной оболочкой. При снятом роговом слое кожи сопротивление внутренних тканей не превышает 1000 Ом.

При сухой неповрежденной коже сопротивление может достигать 10000 и даже более 100000 Ом.

В практике обычно считают сопротивление тела человека активным и равным 1000 Ом.

В действительных условиях сопротивление тела человека меняется в широких пределах и зависит от состояния кожи (сухая, влажная, чистая, поврежденная), площади контактов и места их приложения, а также от окружающей среды (влажность и температура воздуха, запыленность, загазованность) и других факторов, отмеченных выше.

Исход поражения электрическим током во многом зависит и от физического и психического состояния человека. Электрическое сопротивление тела человека, находящегося в состоянии опьянения или нервного возбуждения, а также с дефектами кожного покрова, значительно уменьшается.

Состояние окружающей среды

Влажность и температура воздуха, наличие заземленных металлических конструкций и полов, токопроводящая пыль и другие факторы окружающей среды оказывают дополнительное влияние на условие электробезопасности. Во влажных помещениях с высокой температурой или наружных электроустановках складываются неблагоприятные условия, при которых обеспечивается наилучший контакт с токоведущими частями. Наличие заземленных металлических конструкций и полов создает повышенную опасность поражения вследствие того, что человек практически постоянно связан с одним полюсом (землей) электроустановки. Токопроводящая пыль также улучшает условия для электрического контакта человека, как с токоведущими частями, так и с землей.

Производственные помещения согласно ПУЭ (Правилам устройства электроустановок) делятся на три группы:

1. Помещения с повышенной опасностью поражения электрическим током имеют следующие признаки:

- помещения с относительной влажностью воздуха 75 %, или содержащие технологическую токопроводяшую пыль, которая оседает на проводах, проникает внутрь машин и др.);

- токопроводящие полы (металлические, земляные, железобетонные, и др.);

- температура воздуха, длительно превышающая 30°С;

- возможность одновременного прикосновения человека к заземленным металлоконструкциям зданий, технологическим аппаратам, механизмам и к металлическим корпусам электрооборудования.

Заземление.

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т. п.).

Защитное заземление следует отличать от других видов заземления, например, рабочего заземления и заземления молниезащиты.

Рабочее заземление — преднамеренное соединение с землей отдельных точек электрической цепи, например нейтральных точек обмоток генераторов, силовых и измерительных трансформаторов, дугогасящих аппаратов, реакторов поперечной компенсации в дальних линиях электропередачи, а также фазы при использовании земли в качестве фазного или обратного провода. Рабочее заземление предназначено для обеспечения надлежащей работы электроустановки в нормальных или аварийных условияхи осуществляется непосредственно (т. е. путем соединения проводником заземляемых частей с заземлителем) или через специальные аппараты — пробивные предохранители, разрядники, резисторы и т. п.

Заземление молниезащиты — преднамеренное соединение с землей молниеприемников и разрядников в целях отвода от них токов молнии в землю.

Принцип действия защитного заземления — снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус и другими причинами. Это достигается путем уменьшения потенциала заземленного оборудования (уменьшением сопротивления заземлителя), а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования (подъемом потенциала основания, на котором стоит человек, до значения, близкого к значению потенциала заземленного оборудования).

Напряжение прикосновения и ток через тело человека в случае аварии будут определяться по формулам:

где a1 – коэффициент, учитывающий дополнительное сопротивление цепи человека (одежда, обувь).

Уменьшая значение сопротивления заземлителя растеканию тока RЗ, можно уменьшить напряжение корпуса электроустановки относительно земли, в результате чего уменьшаются напряжение прикосновения и ток через тело человека.

Заземление будет эффективным лишь в том случае, если ток замыкания на землю IЗ практически не увеличивается с уменьшением сопротивления заземлителя. Такое условие выполняется в сетях с изолированной нейтралью напряжением до 1 кВ, так как в них ток замыкания на землю в основном определяется сопротивлением изоляции проводов относительно земли, которое значительно больше сопротивления заземлителя (рис.4).

Рис. 4 Схема сети с изолированной нейтралью и защитным заземлением электроустановки

Изолированная нейтраль – нейтраль генератора или трансформатора в сетях трехфазного тока напряжением до 1 кВ, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты и подобные им устройства, имеющие большое сопротивление.

Область применения защитного заземления:

- электроустановки напряжением до 1 кВ в трехфазных трехпроводных сетях переменного тока с изолированной нейтралью;

- электроустановки напряжением до 1 кВ в однофазных двухпроводных сетях переменного тока изолированных от земли;

- электроустановки напряжением до 1 кВ в двухпроводных сетях постоянного тока с изолированной средней точкой обмоток источника тока

- электроустановки в сетях напряжением выше 1 кВ переменного и постоянного тока с любым режимом нейтрали или средней точки обмоток источников тока.

2.Зануление.

Зануление - это преднамеренное электрическое соединение открытых проводящих частей электроустановок с глухозаземленной нейтральной точкой генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

Глухозаземленная нейтраль источника электроэнергии - нейтраль генератора или трансформатора в сетях трехфазного тока напряжением до 1 кВ, присоединенная к заземляющему устройству непосредственно или через малое сопротивление.

Для соединения открытых проводящих частей потребителя электроэнергии с глухозаземленной нейтральной точкой источника используется нулевой защитный проводник.

Нулевым защитным проводникомназывается проводник, соединяющий зануляемые части (открытые проводящие части) с глухозаземленной нейтральной точкой источника питания трехфазного тока или с заземленным выводом источника питания однофазного тока, или с заземленной средней точкой источника питания в сетях постоянного тока.

Рис.5 Схема зануления (U – фазное напряжение, Iк – ток короткого зануления, 1, 2, 3 – фазы, 0 – нулевой провод, R0 – сопротивление нейтральной точки).

Принцип действия зануления - превращение замыкания на корпус в однофазное короткое замыкание (замыкание между фазным и нулевым защитным проводниками) с целью вызова большого тока короткого замыкания, способного обеспечить срабатывание максимальной токовой защиты и тем самым автоматически отключить поврежденную электроустановку от питающей сети. Поскольку зануленные части оказываются заземленными через нулевой защитный проводник, то в аварийный период, т. е. с момента возникновения замыкания на корпус и до автоматического отключения поврежденной установки от сети, проявляется защитное устройство этого заземления подобно тому, как это имеет место при защитном заземлении. Наличие заземления корпусов через нулевой проводник снижает в аварийный период их напряжение относительно земли. Следовательно, зануление осуществляет два защитных действия — быстрое автоматическое отключение поврежденной установки от питающей сети и снижение напряжения зануленных частей, оказавшихся под напряжением относительно земли. Отключение происходит лишь при замыкании на корпус, а снижение напряжения - во всех случаях возникновения напряжения на зануленных частях, в т. ч.:

- при замыкании на корпус;

- электростатических и электромагнитных наводках от соседних цепей;

- выносе потенциала от др. электроустановок и т. п.

Область применения зануления:

- электроустановки напряжением до 1 кВ в трехфазных сетях переменного тока с заземленной нейтралью ( обычно это сети 220/127, 380/220, 660/380 В);

- электроустановки напряжением до 1 кВ в однофазных сетях переменного тока с заземленным выводом;

- электроустановки напряжением до 1 кВ в сетях постоянного тока с заземленной средней точкой источника.

3. Защитное отключение.

Защитным отключением называется автоматическое отключение электроустановок при однофазном (однополюсном) прикосновении к частям, находящимся под напряжением, недопустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения.

Защита осуществляется специальным устройством защитного отключения (УЗО), которое, работая в дежурном режиме, постоянно контролирует условия поражения человека электрическим током. Область применения: электроустановки в сетях с любым напряжением и любым режимом нейтрали. Наибольшее распространение защитное отключение получило в электроустановках, используемых в сетях напряжением до 1 кВ с заземленной или изолированной нейтралью.

Устройство защитного отключения (более точное название: устройство защитного отключения, управляемое дифференциальным (остаточным) током – УЗО-Д) - механический коммутационный аппарат или совокупность элементов, которые при достижении (превышении) дифференциальным током заданного значения при определённых условиях эксплуатации должны вызвать размыкание контактов. Может состоять из различных отдельных элементов, предназначенных для обнаружения, измерения (сравнения с заданной величиной) дифференциального тока и замыкания и размыкания электрической цепи (разъединителя)[1].

Основная задача УЗО - защита человека от поражения электрическим током и от возникновения пожара, вызванного утечкой тока через изношенную изоляцию проводов и некачественные соединения. УЗО предназначены для:

- защиты человека от поражения электрическим током при косвенном прикосновении (прикосновение человека к открытым проводящим нетоковедущим частям электроустановки, оказавшимся под напряжением в случае повреждения изоляции), а также при непосредственном прикосновении (прикосновение человека к токоведущим частям электроустановки, находящимся под напряжением). Данную функцию обеспечивают УЗО соответствующей чувствительности (ток отсечки не более 30 мА);

- предотвращения возгораний при возникновении токов утечки на корпус или на землю.

Принцип работы УЗО основан на измерении баланса токов между входящими в него токоведущими проводниками с помощью дифференциального трансформатора тока. Если баланс токов нарушен, то УЗО немедленно размыкает все входящие в него контактные группы, отключая таким образом неисправную нагрузку.

УЗО измеряет алгебраическую сумму токов, протекающих по контролируемым проводникам (двум для однофазного УЗО, четырем для трехфазного и т. д.): в нормальном состоянии ток, «втекающий» по одним проводникам, должен быть равен току, «вытекащему» по другим, то есть сумма токов, проходящих через УЗО равна нулю (точнее, сумма не должна превышать допустимое значение). Если же сумма превышает допустимое значение, то это означает, что часть тока проходит помимо УЗО, то есть контролируемая электрическая цепь неисправна - в ней имеет место утечка.

С точки зрения электробезопасности УЗО принципиально отличаются от устройств защиты от сверхтока (предохранителей) тем, что УЗО предназначены именно для защиты от поражения электрическим током, поскольку они срабатывают при утечках тока значительно меньших, чем предохранители (обычно от 2 ампер и более для бытовых предохранителей, что во много раз превышает смертельное для человека значение). УЗО должны срабатывать до того, как электрический ток, проходящий через организм человека, вызовет фибрилляцию сердца — наиболее частую причину смерти при поражениях электрическим током (табл. 3).

Таблица 3

Наибольшее допустимое время защитного автоматического отключения питания в зависимости от фазного напряжения

Номинальное фазное напряжение U, В Время отключения, с
0,8
0,4
0,2
Более 380 0,1

Выравнивание потенциалов.

Принцип действия данного технического способа защиты состоит в снижении напряжения:

- прикосновения выравниванием потенциалов основания, на котором стоит человек, и заземленного или зануленного оборудования путем подъема потенциала основания в пределах площади, с которой возможно касание, до уровня, равного или близкого к уровню потенциала заземленного или зануленного оборудования;

- между заземленным или зануленным оборудованием и строительными или производственными конструкциями в помещениях или наружных установках за счет подъема потенциала последних до уровня, равного или близкого к потенциалу заземленного оборудования;

- шага (выравнивание потенциалов за пределами контура) формированием зоны растекания тока заземлителей с более пологой потенциальной кривой.

Область применения: дополнительный к защитному заземлению или занулению технический способ защиты в электроустановках напряжением до 1000 В сетей переменного тока с изолированной или глухозаземленной нейтралью, с изолированным или заземленным выводом источника однофазного тока, а также в электроустановках сетей постоянного тока с изолированной или заземленной средней точкой. Как самостоятельный технический способ защиты в электроустановках напряжением до 1000В выравнивание потенциалов не применяют.

Выполнение сводится к выравниванию потенциалов электрооборудования и основания, заземленного или зануленного электрооборудования и конструкций, выравниванию потенциалов за пределами контура эаземлителя.

Выравнивание потенциалов электрооборудования и основания достигают устройством контурного эаземлителя, электроды которого располагают вокруг здания (сооружения) с заземленным электрооборудованием или по контуру вокруг заземленного электрооборудования. Внутри контурного эаземлителя прокладывают горизонтальные поперечные и (или) продольные электроды — стальные полосы на ребро, соединенные сваркой с электродами контура.

8. Электрозащитные средства.

Электрозащитные средства - переносимые и перевозимые изделия, служащие для защиты людей, работающих с электроустановками, от поражения электрическим током, от воздействия электрической дуги и электромагнитного поля.

По назначению подразделяются на:

1. Изолирующие.

- основные;

- дополнительные.

2. Вспомогательные.

3. Ограждающие (переносные ограждения, временные переносные заземления, закорачивающие провода).

Основные защитные средства - средства защиты (диэлектрические перчатки, инструмент с изолирующими рукоятками, электроизолирующая каска, указатели напряжения и др.), изоляция которых длительно выдерживает рабочее напряжение электроустановок и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением.

Дополнительные защитные средства - средства защиты (изолирующая подставка, диэлектрические боты, диэлектрический коврик, диэлектрические галоши), которые при их использовании не могут обеспечить защиту от поражения электрическим током; они являются дополнительной к основным средствам мерой защиты, а также служат для защиты от напряжения прикосновения и шагового, от ожогов электрической дугой и др.

Вспомогательные приспособления предназначены для защиты людей от сопутствующих опасных и вредных производственных факторов при работе с электрооборудованием и, кроме того, от падения с высоты. К ним относят экранирующие комплекты и устройства для защиты от воздействия электрического поля, противогазы, защитные каски, страховочные канаты, монтерские когти, предохранительные монтерские пояса и т. п.

Искусственное дыхание.

При отсутствии признаков жизни (дыхания, сердцебиения, пульса) нельзя считать пострадавшего мертвым. Смерть в первые минуты после поражения - кажущаяся и обратима при оказании помощи. Пораженному угрожает наступление необратимой смерти в том случае, если ему немедленно не будет оказана помощь в виде искусственного дыхания с одновременным массажем сердца. Это мероприятие необходимо проводить непрерывно на месте происшествия до прибытия врача.

Переносить пострадавшего следует только в тех случаях, когда опасность продолжает угрожать пострадавшему или оказывающему помощь.

Искусственное дыхание начинают делать немедленно после освобождения от электрического тока и проводят непрерывно до появления положительного результата или бесспорных признаков действительной смерти (трупные пятна и окоченение). Наблюдались случаи, когда после поражения током люди были возвращены к жизни лишь через несколько часов непрерывного оказания помощи. Целесообразность продолжения принимаемых мер определяет врач.

Прежде чем непосредственно приступать к выполнению процедуры, необходимо быстро освободить пострадавшего от всего, что стесняет дыхание: расстегнуть ворот, ослабить пояс и т.д.; быстро освободить рот от слизи и посторонних предметов, например от съемных зубных протезов. Если челюсти в результате спазмов оказались крепко стиснутыми, четыре пальца обеих рук ставят позади углов нижней челюсти под ушами и, упираясь большими пальцами в челюсть снизу, выдвигают ее так, чтобы нижние зубы оказались впереди верхних. Если этим способом не удается раскрыть рот, осторожно, чтобы не сломать зубы, между задними коренными зубами вставляют дощечку, металлическую пластинку, ручку ложки или другой подобный предмет и с их помощью разжимают челюсти.

Техника вдувания воздуха в рот или в нос заключается в следующем. Пострадавший лежит на спине. Оказывающий помощь до начала искусственного должен обеспечить свободное прохождение воздуха в легкие через дыхательные пути. Голову пострадавшего надо запрокинуть назад, для чего подкладывают одну руку под шею, а другой рукой надавливают на лоб. Этим обеспечивается отхождение корня языка от задней стенки гортани и восстановлении проходимости дыхательных путей. При указанном положении головы обычно рот раскрывается. Если во рту есть слизь, ее вытирают платком или краем рубашки, натянутым на указательный палец, еще раз проверяют, нет ли во рту посторонних предметов, которые должны быть удалены, после чего приступают к вдуванию воздуха в рот или нос. При вдувании воздуха в рот оказывающий помощь плотно (можно через марлю или платок) прижимает свой рот ко рту пострадавшего, а своим лицом (щекой) или пальцами руки, находящейся на лбу, зажимает ему нос, чтобы обеспечить поступление всего вдуваемого воздуха в его легкие.
При невозможности полного охвата рта пострадавшего следует вдувать воздух в нос, плотно закрыв при этом рот пострадавшего.

Во время проведения искусственного дыхания надо следить, чтобы при каждом вдохе у пострадавшего расширялась грудная клетка, а также внимательно наблюдать за его лицом: если пошевелятся губы или веки или будет замечено глотательное движение, проверяют, не произойдет ли самостоятельного вдоха; если после нескольких мгновений ожиданий окажется, что пострадавший не дышит, искусственное дыхание немедленно возобновляют.
Вдувание воздуха производят каждые 5-6 сек, что соответствует частоте дыхания 10-12 раз в минуту. После каждого вдувания ("вдоха") освобождают рот и нос пострадавшего для свободного выхода воздуха из его легких.

Наружный (непрямой) массаж сердца.

Наружный (непрямой) массаж сердца поддерживает кровообращение как при остановившемся сердце, так и при нарушенном ритме его сокращений.
Для проведения непрямого массажа сердца пострадавшего следует уложить на спину на жесткую поверхность (скамью или пол). Обнажить у него грудную клетку: вся стесняющая одежда, пояс расстегиваются или снимаются. Оказывающий помощь становится сбоку от пострадавшего так, чтобы иметь возможность наклониться над ним (если пострадавший лежит на полу - становятся рядом на колени).Определив местоположение нижней трети грудины, накладывают на нее основание ладони (подушечку) разогнутой кисти. Ладонь другой руки накладывают поверх первой и начинают ритмично надавливать на нижний край грудины.
Надавливать на грудину надо резкими толчками: при этом грудина смещается вниз (к спине) в сторону позвоночника на 3-5 см. Сердце сдавливается, и из его полости выдавливается кровь в кровеносные сосуды. Надавливание необходимо повторять примерно 1 раз в секунду.

Обязательным условием обеспечения организма кислородом при отсутствии работы сердца является одновременное с массажем сердца проведение искусственного дыхания. Поскольку надавливание на грудную клетку затрудняет ее расширение при вдохе, вдувание воздуха проводится во время паузы, которая специально соблюдается через каждые четыре-шесть надавливаний на грудину.

Как правило, проводить оживление должны два специально обученных человека, каждый из которых может поочередно проводить искусственное дыхание и массаж сердца, меняя друг друга через каждые 5-10 мин. Это менее утомительно, чем беспрерывное проведение одной и той же процедуры (в особенности массажа сердца).
В крайнем случае помощь может быть оказана и одним человеком, который чередует искусственное дыхание и массаж сердца в следующем порядке: после двух-трех глубоких вдуваний воздуха в рот (или в нос) пострадавшего, он проводит 15 надавливаний на грудину (массаж сердца), после чего вновь производит два-три глубоких вдувания воздуха и приступает к массажу сердца и т.д.

В результате правильного проведения искусственного дыхания и массажа сердца у пострадавшего появляются признаки улучшения: серо-землянистый с синеватым оттенком цвет лица сменяется розоватым; начинают устанавливаться самостоятельные, все более равномерные дыхательные движения; сужаются зрачки. Узкие зрачки указывают на достаточное снабжение мозга кислородом, а начинающееся расширение - об ухудшении кровоснабжения. Тогда необходимы более эффективные меры, например, поднять пострадавшему ноги на 40-60 см, чтобы способствовать лучшему притоку крови в сердце из вен нижней части тела. Для поддержания ног в поднятом положении под них подкладывают какой-либо сверток.

Искусственное дыхание и массаж проводят до появления самостоятельного дыхания и восстановления деятельности сердца. Однако появление слабых вдохов даже при наличии пульса не дает оснований для прекращения искусственного дыхания. О восстановлении работы сердца судят по появлению собственного, не поддерживаемого массажем регулярного пульса. Для проверки прерывают массаж на 2-3 с и, если пульс не обнаруживается, массаж немедленно возобновляют.

После появления первых признаков улучшения наружный массаж сердца и искусственное дыхание продолжают еще в течение 5-10 мин, чтобы вдувание совпадало по времени с собственным вдохом.

Лекция 7. ЭЛЕКТРОБЕЗОПАСНОСТЬ

Наши рекомендации