Проверки изоляции линий электропередачи
Во время эксплуатации электрооборудования оценка состояния диэлектрических слоев производится:
· постоянно;
· периодически.
Постоянный анализ качества изоляции в автоматическом режиме осуществляют специальные устройства контроля. Они настроены таким образом, что замеряют очень малую в нормальном режиме величину токов утечек. Когда возникает нарушение диэлектрического слоя, то эти токи возрастают, а момент их перехода через критическое значение фиксируется релейной токовой схемой с выдачей команды на сигнализацию для оповещения оперативного персонала.
Периодический контроль состояния изоляции электрооборудования, включая линии электропередач, возложен на специально сформированные электрические лаборатории, осуществляющие высоковольтные проверки в виде измерений и испытаний специализированными передвижными или стационарными установками.
6. Общая характеристика внутренней изоляции
Внутренней изоляцией называются части изоляционной конструкции, в которых изолирующей средой являются жидкие, твердые или газообразные диэлектрики или их комбинации, не имеющие прямых контактов с атмосферным воздухом.
Целесообразность или необходимость применения внутренней изоляции, а не окружающего нас воздуха обусловлена рядом причин.
Во-первых, материалы для внутренней изоляции обладают значительно более высокой электрической прочностью (в 5-10 раз и более), что позволяет резко сократить изоляционные расстояния между проводниками и уменьшить габариты оборудования. Это важно с экономической точки зрения.
Во-вторых, отдельные элементы внутренней изоляции выполняют функцию механического крепления проводников, жидкие диэлектрики в ряде случает значительно улучшают условия охлаждения всей конструкции.
Элементы внутренней изоляции в высоковольтных конструкциях в процессе эксплуатации подвергаются сильным электрическим, тепловым и механическим воздействиям. Под влиянием этих воздействий диэлектрические свойства изоляции ухудшаются, изоляция “стареет” и утрачивает свою электрическую прочность.
К внутренней изоляции относится изоляция обмоток трансформаторов и электрических машин, изоляция кабелей, конденсаторов, герметизированная изоляция вводов, изоляция между контактами выключателя в отключенном состоянии, т.е. изоляция герметически изолированная от воздействия окружающей среды корпусом, оболочкой, баком и т.д. Внутренняя изоляция как правило представляет собой комбинацию различных диэлектриков (жидких и твердых, газообразных и твердых).
Внутренней изоляцией называются части изоляционной конструкции, в которых изолирующей средой являются жидкие, твердые или газообразные диэлектрики или их комбинации, не имеющие прямых контактов с атмосферным воздухом.
Целесообразность или необходимость применения внутренней изоляции, а не окружающего нас воздуха обусловлена рядом причин. Во-первых, материалы для внутренней изоляции обладают значительно более высокой электрической прочностью (в 5-10 раз и более), что позволяет резко сократить изоляционные расстояния между проводниками и уменьшить габариты оборудования. Это важно с экономической точки зрения. Во-вторых, отдельные элементы внутренней изоляции выполняют функцию механического крепления проводников, жидкие диэлектрики в ряде случает значительно улучшают условия охлаждения всей конструкции.
Элементы внутренней изоляции в высоковольтных конструкциях в процессе эксплуатации подвергаются сильным электрическим, тепловым и механическим воздействиям. Под влиянием этих воздействий диэлектрические свойства изоляции ухудшаются, изоляция “стареет” и утрачивает свою электрическую прочность.
Механические нагрузки опасны для внутренней изоляции тем, что в твердых диэлектриках, входящих в ее состав, могут появиться микротрещины, в которых затем под действие сильного электрического поля возникнут частичные разряды и ускорится старение изоляции.
Особая форма внешнего воздействия на внутреннюю изоляцию обусловлена контактами с окружающей средой и возможностью загрязнения и увлажнения изоляции при нарушении герметичности установки. Увлажнение изоляции ведет к резкому уменьшению сопротивления утечки и росту диэлектрических потерь.
Внутренняя изоляция должна обладать более высоким уровнем электрической прочности, чем внешняя изоляция, т.е. таким уровнем, при котором пробой полностью исключаются в течение всего срока службы.
7. Молния как источник грозовых перенапряжений
Молния представляет собой разновидность газового разряда при очень большой длине искры. Общая длина канала молнии достигает нескольких километров, причем значительная часть этого канала находится внутри грозового облака. Из-за того, что в облаке образуется несколько изолированных друг от друга скоплений зарядов (в нижней части облака скапливаются преимущественно заряды отрицательной полярности), молния бывает многократной, т.е. состоит из нескольких единичных разрядов, развивающихся по одному и тому же пути, причем каждый разряд начинается лидерным и завершается обратным (главным) разрядом.
Грозовые разряды — молнии вызываются электрическими зарядами, которые в больших количествах накапливаются в облаках. Механизм накопления и разделения положительных и отрицательных зарядов в основном объясняется наличием в грозовых облаках восходящих потоков воздуха. В настоящее время существует много теорий, которые, исходя из наличия восходящих потоков воздуха, по-разному в деталях освещают электризацию облаков, но такой теории, которая удовлетворительно объясняла бы это явление, наблюдаемое в природе, пока нет.
Одно из распространенных предположений образования электрических зарядов в облаках исходит из того, что этот физический процесс происходит в постоянном электрическом поле земли, которое обнаружил еще М. В. Ломоносов при проводимых им опытах.
Наша планета всегда имеет отрицательный заряд. Напряженность электрического поля вблизи поверхности земли составляет в среднем 100 В/м (поле «ясной погоды»). Она обусловлена зарядами земли и мало зависит от времени года и суток и почти одинакова для любой точки земной поверхности. Воздух, окружающий Землю, имеет свободные заряды, которые движутся по направлению электрического поля Земли. Каждый кубический сантиметр воздуха вблизи земной поверхности содержит около 600 пар положительно и отрицательно заряженных частиц. С удалением от земной поверхности плотность заряженных частиц в воздухе растет. У земли проводимость воздуха мала, но на расстоянии 80 км от земной поверхности она увеличивается в 3 млрд. раз и достигает проводимости пресной воды.
Таким образом, Землю с окружающей атмосферой по электрическим свойствам можно представить как шаровой конденсатор колоссальных размеров, обкладками которого являются Земля и проводящий слой воздуха, находящийся на расстоянии 80 км от поверхности Земли. Изолирующей прослойкой между этими обкладками служит мало-проводящий электричество слой воздуха толщиной 80 км. Между обкладками такого конденсатора напряжение составляет около 200 кВ, а ток, проходящий под воздействием этого напряжения, равняется 1,4 кА. Мощность конденсатора составляет около 300 МВт. В электрическом поле этого конденсатора в интервале от I до 8 км от поверхности Земли образуются грозовые облака и совершаются грозовые явления.
По характеру происхождения грозы разделяются на тепловые и фронтальные. Развитие тепловой грозы показано на рис. 1. В результате нагрева солнцем земной поверхности разогреваются нижние слои воздуха. Теплые массы воздуха расширяются и стремятся подняться вверх. На высоте 2 км и более они попадают в область отрицательных температур. Влага, уносимая этими потоками воздуха, конденсируется и образует грозовые облака, которые состоят из мельчайших водяных электрически заряженных капель. Такие облака образуются в жаркое летнее время, преимущественно во второй половине дня, и занимают сравнительно небольшие пространства.
Фронтальные грозы образуются в тех случаях, когда два потока воздуха с разной температурой движутся навстречу друг другу и соприкасаются своими фронтовыми частями. При этом поток воздуха, имеющий более низкую температуру, стремится опуститься вниз и занимает пространство в непосредственной близости от поверхности земли, а теплые массы воздуха устремляются вверх и образуют завихрения (рис. 2).
Достигнув высоты с более низкими температурами, унесенная с поверхности земли влага конденсируется и образует грозовые облака.
Фронтальные грозы охватывают широкие площади земной поверхности и движутся со скоростью от 5—6 до 100— 150 км/ч и более. Такие грозы могут возникать в любое время суток. Сконденсировавшаяся влага на высотах с более низкими температурами образует капли разных размеров. Находясь в электрическом поле «конденсатора», капли поляризуются (рис. 3,а): нижние части их имеют положительный заряд, а верхние — отрицательный. Мелкие капли восходящими потоками воздуха уносятся вверх, а крупные, более тяжелые капли падают вниз. При движении вверх поляризованные капли верхней отрицательно заряженной частью встречают на своем пути отрицательные и положительные свободные заряды; первые из них отталкиваются, как имеющие одноименный заряд, а вторые— притягиваются, и капли постепенно становятся положительно заряженными. Те капли, которые движутся вниз, наоборот, притягивают отрицательные заряды и становятся отрицательно заряженными.
8. Защита от прямых ударов молнии
Прямой удар является наиболее опасным из всех проявлений молнии с точки зрения поражений зданий и сооружений. Многолетние наблюдения и данные свидетельствуют о том, что подавляющее большинство пожаров и разрушений при грозовых разрядах вызвано именно прямыми ударами молнии.
Поскольку прямой удар молнии в здание или сооружение представляет большую опасность, то следует подробнее рассмотреть отдельные элементы различных систем, обеспечивающих надежную молниезащиту.
В настоящее время защита зданий и сооружений от прямых ударов молнии осуществляется при помощи молниеотводов различных модификаций.
Молния имеет свойство избирательно поражать заземленные (электропроводность стремится к бесконечности) и возвышающиеся над поверхностью земли металлические предметы. Защитное действие каждого типа молниеотвода основано на этой особенности грозового разряда.
Молниеотвод представляет собой возвышающееся над защищаемым объектом устройство, воспринимающее прямой удар молнии и отводящее токи молнии (посредством определенной системы заземления) в землю. Каждый молниеотвод независимо от типа состоит из следующих основных элементов (рис. 6): молниеприемника 1, непосредственно воспринимающего прямой удар молнии; несущей конструкции 2, предназначенной для установки молниеприемника; токоотвода 3, обеспечивающего отвод тока молнии к заземлителю; заземлителя 4, отводящего ток молнии в землю и обеспечивающего контакт с землей молниеприемника и токоотвода.
В современной практике молниезащиты используют следующие типы молниеотводов: стержневые (рис. 6); тросовые или антенные (рис. 7а) и сетчатый (рис. 76). Кроме того, для комплексной защиты сооружений в ряде случаев применяют комбинированные типы молниеотводов (например тросово-стержневые, рис. 7в).
Благодаря простоте изготовления и дешевизне получили наибольшее распространение стержневые молниеотводы, обеспечивающие высокую надежность в эксплуатации.
Хотя тросовые молниеотводы, и не уступают стержневым по своим экономическим показателям, с точки зрения эксплуатации они являются менее надежными и используются лишь для защиты весьма протяженных объектов.
Сетчатые молниеотводы, обладающие достаточно высокой степенью надежности, широко применяются при защите сооружений III категории. В ряде случаев они по своим экономическим показателям (сравнительно небольшой расход металла, отсутствие железобетонных конструкций, простота изготовления, монтажа и эксплуатации) превосходят стержневые и тросовые молниеотводы и могут быть использованы и для защиты сооружений I и II категорий, когда применение стержневых или тросовых молниеотводов по тем или иным причинам неприемлемо (например при значительной высоте защищаемого объекта).
В зависимости от конструктивных особенностей и назначения защищаемого объекта, а также местных условий стержневые и тросовые молниеотводы могут выполняться как отдельно стоящими, так и установленными на защищаемом сооружении.
Для высоких сооружений (более 30 м), когда устройство отдельно стоящих или изолированных молниеотводов не представляется возможным, как исключение допускается защита от прямых ударов молнии неизолированными молниеотводами, устанавливаемыми на защищаемом сооружении. Токоотводы прокладываются по наружным стенам защищаемого сооружения. При этом должны быть выполнены следующие дополнительные условия.
1. Число токоотводов от молниеприемника до заземлителя должно быть не менее двух, располагаемых на расстоянии не менее 15 м друг от друга или по противоположным сторонам здания.
2. Каждый токоотвод следует присоединять к отдельному заземлителю с величиной сопротивления растеканию тока не более 5 Ом. К этим заземлителям допустимо присоединение производственных защитных заземлителей и различных металлических подземных коммуникаций. В этом случае устройство заземлителя защиты от электростатической индукции не требуется.
3. По каждому этажу или не более чем через 7—8 м по высоте сооружения должны быть проложены металлические пояса (полосы) для выравнивания потенциалов на отдельных уровнях. В качестве металлических поясов можно использовать поэтажные контуры защитного заземления электроустановок. К этим поясам должны быть присоединены все токоотводы, металлические элементы конструкций и оборудование внутри защищаемого сооружения.
Высокие сооружения, имеющие металлическую крышу, не требуют установки специальных молниеприемников; в этом случае роль молниеприемника выполняет металлическая крыша.
В качестве молниеприемника допускается использовать защитную сетку с ячейками 5x5 м, выполненную из полосовой стали 20 х 4 мм, 25 х 4 мм или из стальной проволоки диаметром 8 мм, укладываемую на неметаллическую кровлю.
Подводка трубопроводов на эстакадах к защищаемому сооружению допускается только от сооружений одного и того же объекта. В этом случае вся трасса эстакады должна вписываться в зону защиты ближайших сооружений, снабженных молниезащитой, или специально установленных молниеотводов. Кроме то- на эстакадные трубопроводы должны быть у ввода в здание присоединены к заземлителю зашиты от электростатической индукции.
На ближайших двух опорах от защищаемого сооружения такие трубопроводы должны быть присоединены к специальным заземлителям с величиной сопротивления растеканию тока промышленной частоты: для опоры, ближайшей к сооружению, 5 Ом и для последующей опоры 10 Ом.
Защита от электростатической индукции должна выполняться путем присоединения всего металлического оборудования и аппаратуры защищаемого сооружения к специальному заземлителю защиты от электростатической индукции. Последовательное включение заземленных элементов в одну цепь не допускается.
олниеотводы как средство защиты от прямых ударов молнии применялись задолго до начала нашей эры, но получили всеобщее признание только в середине XVIII века в результате работ Ломоносова и Франклина.
Назначение молниеотводов — воспринять подавляющее число ударов молнии в пределах защищаемой территории и отвести ток молнии в землю.
Каждый молниеотвод состоит из молниеприемника, возвышающегося над защищаемым объектом, заземлителя и токоотвода, соединяющего молниеприемник с заземлителем. По типу молниеприемников различают стержневые и тросовые молниеотводы. Стержневые молниеотводы выполняются в виде вертикально установленных стержней (мачт), соединенных с заземлителем, а тросовые — в виде горизонтально подвешенных тросов. Металлический стержневой молниеотвод или опора одновременно выполняют функции токоотвода. Если же молниеприемник молниеотвода (стержень, трос) расположен на изолирующих опорах (дымовые трубы, деревянные опоры), то по ним прокладываются тросы, соединяющие молниеприемник с заземлителем.
Защитное действие молниеотводов основано на явлении избирательной поражаемости молнией высоких объектов. Высота над поверхностью земли, при которой лидер начинает ориентироваться по направлению к наиболее высокому наземному объекту, называется высотой ориентировки молнии (Н). Если головка лидера на высоте ориентировки находится в точке, расположенной над молниеотводом, то разряд поразит молниеотвод. По мере удаления точки ориентировки от молниеотвода повышается вероятность удара молнии в землю, а при достаточном удалении точки ориентировки от молниеотвода разряды будут поражать в основном землю.
Если вблизи молниеотвода поместить более низкий по высоте защищаемый объект, то при определенном расстоянии между молниеотводом и объектом разрядное напряжение промежутка лидер молнии — объект будет всегда больше разрядных напряжений промежутков лидер — молниеотвод и лидер — земля. Объект будет защищен от прямого удара молнии.
Необходимым условием надежной защиты является хорошее заземление молниеотвода, так как при ударе молнии в плохо заземленный молниеотвод на нем создается весьма высокое напряжение, способное вызвать пробой с молниеотвода на защищаемый объект.
9. Заземление в электрических установках высокого напряжения
заземления в электроустановках высокого напряжения. Заземления состоят из заземлителей и соединительного провода.
Заземлители делятся на:
а) сосредоточенные в виде стальных труб, стержней, уголков длиной 2-3 м, забитых вертикально в землю;
б) протяженные в виде длинных горизонтальных полос.
Все металлические части электроустановок, нормально не находящиеся под напряжением, но могущие оказаться под напряжением из-за повреждения изоляции, должны надежно соединяться с землей. Такое заземление называется защитным, так как его целью является защита обслуживающего персонала от опасных напряжений прикосновения.
Заземление обязательно во всех электроустановках при напряжении 380 В и выше переменного тока, 440 В и выше постоянного тока, а в помещениях с повышенной опасностью, особо опасных и в наружных установках — при напряжении 42 В и выше переменного тока, 110 В и выше постоянного тока.
В электрических установках заземляются корпуса электрических машин, трансформаторов, аппаратов, вторичные обмотки измерительных трансформаторов, приводы электрических аппаратов, каркасы распределительных щитов, пультов, шкафов, металлические конструкции распределительных устройств, металлические корпуса кабельных муфт, металлические оболочки и броня кабелей, проводов, металлические конструкции зданий и сооружений и другие металлические конструкции, связанные с установкой электрооборудования.
Заземление, предназначенное для создания нормальных условий работы аппарата или электроустановки, называется рабочим заземлением. К рабочему заземлению относится заземление нейтралей трансформаторов, генераторов, дугогасительных катушек. Без рабочего заземления аппарат не может выполнить своих функций или нарушается режим работы электроустановки.
Для защиты оборудования от повреждения ударом молнии применяется грозозащита с помощью разрядников, искровых промежутков, стержневых и тросовых молниеотводов, которые присоединяются к заземлителям. Такое заземление называется грозозащитным.
Обычно для выполнения всех трех типов заземления используют одно заземляющее устройство.
Для выполнения заземления используют естественные и искусственные заземлители.
В качестве естественных заземлителей применяют водопроводные трубы, металлические трубопроводы, проложенные в земле, за исключением трубопроводов горючих жидкостей и газов; обсадные трубы скважин, металлические и железобетонные конструкции зданий, находящиеся в соприкосновении с землей; металлические шпунты гидротехнических сооружений; свинцовые оболочки кабелей; заземлители опор ВЛ, соединенные с заземляющим устройством грозозашитным тросом; рельсовые подъездные пути при наличии перемычек между рельсами.
Естественные заземлители должны быть связаны с магистралями заземлений не менее чем двумя проводниками в разных точках.
В качестве искусственных заземлителей применяют прутковую круглую сталь диаметром не менее 10 мм (неоцинкованная) и 6 мм (оцинкованная), полосовую сталь толщиной не менее 4 мм и сечением не менее 48 мм2.
Сечение горизонтальных заземлителей для электроустановок напряжением выше 1 кВ выбирается по термической стойкости (J к доп = 400 °С, С = 70).
Количество заземлителей (уголков, стержней) определяется расчетом в зависимости от необходимого сопротивления заземляющего устройства или допустимого напряжения прикосновения. Размещение искусственных заземлителей производится таким образом, чтобы достичь равномерного распределения электрического потенциала на площади, занятой электрооборудованием. Для этой цели на территории ОРУ прокладывают заземляющие полосы на глубине 0,5—0,7 м вдоль рядов оборудования и в поперечном направлении, т. е. образуется заземляющая сетка, к которой присоединяется заземляемое оборудование.
На рис. 10 показаны план расположения контура заземления на открытом распределительном устройстве, а также кривые изменения потенциалов по территорииОРУ.
При пробое изоляции в каком-либо аппарате его корпус и заземляющий контур окажутся под некоторым потенциалом U3=I3R3. Растекание тока I3 c электродов заземления приводит к постепенному уменьшению потенциала почвы вокруг них. Внутри контура заземления потенциалы выравниваются, поэтому, прикасаясь к поврежденному оборудованию, человек попадает под небольшую разность потенциалов Uпр(напряжение прикосновения), которая составляет некоторую долю потенциала на заземлителе:
где kп — коэффициент напряжения прикосновения, значение которого зависит от условий растекания тока с заземлителя и человека.
Шаговое напряжение, т. е. разность потенциалов между двумя точками поверхности, расположенными на расстоянии 0,8 м, внутри контура невелико (Cшаг 1). За пределами контура кривая распределения потенциалов более крутая, поэтому шаговое напряжение увеличивается (Cшаг2)- При больших токах замыкания на землю для уменьшения Uшагпо краям контура у входов и выходов укладывают дополнительные стальные полосы. Задачей защитного заземления является снижение до безопасной величины напряжений U3, Uпр, Uшаг.
В установках с незаземленными и эффективно заземленными нейтралями требования к расчету защитного заземления принципиально отличаются.
10. Защитные разрядники
Защитными разрядниками называются устройства, обеспечивающие не только защиту изоляции от перенапряжения, но и гашение дуги сопровождающего тока в течение короткого времени, меньшего, чем время действия релейной защиты. Существует два типа разрядников, которые отличаются принципиально различными способами гашения дуги, - трубчатые (РТ) и вентильные разрядники (РВ). В РТ дуга гаснет за счет интенсивного продольного дутья; в РВ - благодаря уменьшению сопровождающего тока с помощью сопротивления, которое включается последовательно с искровым промежутком. РВ, уступая в простоте устройства и дешевизне РТ, обеспечивают наиболее надежную защиту изоляции и поэтому применяются в качестве основного аппарата для защиты подстанций от набегающих волн.
Искровой разрядник – это электрический аппарат, искровой промежуток которого пробивается при определенном значении приложенного напряжения, ограничивая тем самым перенапряжение в установке. Основным элементом разрядника является искровой промежуток. Вольт-секундная характеристика этого промежутка должна лежать ниже вольт-секундной характеристики защищаемого оборудования. При появлении перенапряжения промежуток должен пробиться раньше, чем изоляция защищаемого оборудования.
После пробоя линия заземляется через сопротивление разрядника. При этом напряжение на линии определяется током, проходящим через разрядник, сопротивлениями разрядника и заземления. Чем меньше эти сопротивления, тем эффективнее ограничиваются перенапряжения, то есть больше разница между возможным и ограниченным разрядником перенапряжением. Во время пробоя через разрядник протекает импульс тока.
Напряжение на разряднике при протекании импульса тока данных значения и формы называется остающимся напряжением. Чем меньше это напряжение, тем лучше качество разрядника.
Разделительные искровые разрядники применяются для непрямого соединения компонентов системы молниезащиты с другими, расположенными поблизости, частями и металлоконструкциями сооружений, когда непосредственное соединение не допускается по функциональным причинам.
К системам, для соединения с которыми могут потребоваться разделительные искровые разрядники, относятся:
- заземляющие устройства электроустановок;
- заземляющие устройства телекоммуникационных систем;
- вспомогательные заземлители автоматических выключателей защиты от замыкания на землю, срабатывающих по напряжению;
- используемые в качестве заземлителей рельсы электрифицированных железных дорог постоянного и переменного тока;
- лабораторные измерительные заземляющие электроды;
- установки катодной защиты и системы с наличием блуждающих токов;
- опоры низковольтных кабельных линий, на которых установлена вводная защитно-коммутационная аппаратура;
- изолированные фланцы байпасов и изолированные муфты трубопроводов.
11. Грозозащита линий электропередачи