Изоляция и перенапряжение в электрических сетях

Коронный разряд на проводах ЛЭП

Коронный разряд на проводах линий электропередачи вызывает значительные потери передаваемой энергии. С целью сокращения потерь на общую корону применяется расщепление проводов ЛЭП на несколько составляющих, в зависимости от номинального напряжения линии.

«Системный» способ уменьшения потерь мощности на корону заключается в том, что в зависимости от влажности и температуры воздуха диспетчер уменьшает напряжение в линии до определенной величины. В связи с этим задаются наименьшие допустимые сечения по короне:

110 кВ — 70 мм² (сейчас рекомендуется использовать сечение 95 мм²).

150 кВ — 120 мм².

220 кВ — 240 мм²

Короные разряды на поверхности проводов линий электропередачи возникают в том случае, когда напряженность электрического поля на поверхности проводов превышает пробивную для воздуха. Даже в однородном поле между двумя параллельными пластинами на прочность воздуха оказывают воздействие многие факторы: давление воздуха, материал электродов, наличие паров воды, фотоионизация и вид приложенного напряжения. Любая неровность на поверхности провода (царапины, заусенцы, загрязнение) приводит к местному увеличению напряженности электрического поля и как следствие к возникновению местного коронного разряда. Пробой воздуха при этом сопровождается вызывающими потери энергии акустическими шумами и свечением, радиопомехами, вибрацией провода, а также выделением озона и других веществ.

Применение

Коронный разряд применяется для очистки газов от пыли и сопутствующих загрязнений, для диагностики состояния конструкций (позволяет обнаруживать трещины в изделиях).

Коронный разряд применяется в копировальных аппаратах (ксероксах) и лазерных принтерах для заряда светочувствительного барабана, переноса порошка с барабана на бумагу и для снятия остаточного заряда с барабана.

Коронный разряд применяется для определения давления внутри лампы накаливания. Величина разряда зависит от острия и давления газа вокруг него. Острие у всех ламп одного типа — это нить накала. Значит, коронный разряд будет зависеть только от давления. А значит, о давлении газа в лампе можно судить по величине коронного разряда.

3. Разряд в воздухе вдоль поверхности твердого диэлектрика

Любая внешняя изоляционная конструкция имеет участки, в которых твердый диэлектрик граничит с атмосферным воздухом. На этой границе разряд может происходить в самом твердом диэлектрике или в газовом слое.

Поверхностный газовый разряд сохраняет все свойства газового разряда. Разряд по поверхности твердого диэлектрика имеет и свои особенности, связанные с влиянием твердого диэлектрика на протекание разряда. Введение в воздушный промежуток твердого диэлектрика приводит к смещению разрядного напряжения.

Разрядные напряжения в воздухе вдоль поверхности твердого диэлектрика значительно меньше, чем по тому же пути в чисто воздушных промежутках, и зависят от степени неоднородности электрического поля, расположения поверхности относительно силовых линий поля и состояния поверхности твердого диэлектрика.
В однородном поле, когда силовые линии направлены вдоль чистой сухой поверхности твердого диэлектрика (простейшая модель опорного изолятора), средняя напряженность зависит от гигроскопичности диэлектрика и главным образом от влажности воздуха.
У обычных опорных изоляторов с неоднородным полем при малой нормальной составляющей напряженности разрядное напряжение в сухом состоянии зависит от конструкции арматуры и разрядного расстояния h.

Разрядное напряжение под дождем опорного изолятора с развитой поверхностью приблизительно соответствует разрядному напряжению воздушного промежутка стержень — плоскость с таким же разрядным расстоянием, поэтому оно может быть оценено по кривым .

В случае резко неоднородного поля с преобладающей нормальной составляющей напряженности различают следующие стадии разряда:
1) корона — разрядный процесс в узкой области у края электрода; возникает при напряжении Uк;
2) скользящий разряд - нитевидные разряды вдоль поверхности твердого диэлектрика, охватывающие значительную часть разрядного расстояния; возникает при напряжении Uск,
3) полное перекрытие - соответствует развитию скользящих разрядов на всю длину разрядного промежутка вдоль поверхности твердого диэлектрика.

Необходимость изучения разрядов по поверхности твердого диэлектрика в воздухе связана с тем, что они обусловливают разрядные характеристики внешней изоляции. Напряжение разряда вдоль поверхности твердых диэлектриков в воздухе всегда ниже разрядного напряжения воздушного промежутка такой же длины и конфигурации электрического поля.

Величина напряжения поверхностного разряда определяется длиной разрядного канала, конфигурацией электрического поля в промежутке, электрофизическими характеристиками и состоянием поверхности твердого диэлектрика, температурой, давлением и влажностью воздуха. Все многообразие электрических полей изоляционных конструкций с твердым диэлектриком может быть сведено к трем характерным случаям.

Поверхность раздела двух диэлектрических сред расположена вдоль силовых линий электрического поля.

Поверхностный разряд по мере увеличения приложенного напряжения проходит несколько стадий:

1. При относительно низких напряжениях на электродах возникает коронный разряд в виде полоски ровного неяркого свечения.

2. Увеличение напряжения приводит к расширению области коронирования и образованию на твердом диэлектрике многочисленных слабо светящихся каналов (стримеров), направленных к противоположному электроду. Характер разрядных процессов определяется величиной то- ков, текущих в разрядных каналах.

3. При дальнейшем увеличении напряжения, в случае преобладания нормальной составляющей напряженности, ток возрастает настолько, что становится возможной термическая ионизация в стримерных каналах. Эта форма стримерного разряда, называемая скользящим разрядом, характеризуется интенсивным свечением канала, резким уменьшением сопротивления канала и, следовательно, выносом потенциала в глубь промежутка.

4. Длина скользящих разрядов очень быстро увеличивается с повышением напряжения, и процесс завершается перекрытием промежутка между электродами.

Воздушные ЛЭП

Эти конструкции используют для изоляции тоководов диэлектрические свойства воздуха окружающей их атмосферы. При этом учитывается то, что его удельное сопротивление меняется в зависимости от погоды, температуры, влажности и других параметров. Чтобы исключить эти факторы выбирается оптимальное расстояние между проводами для каждого вида напряжения. С увеличением его значения возрастает безопасное удаление проводов друг от друга.

Поскольку потенциал каждого токовода может стекать на землю, то провода фаз также удаляются от поверхности земли. Однако, на практике их поднимают значительно выше потому, что под ними могут проходить или работать люди, передвигаться транспортные средства, размещаться хозяйственные постройки. Все это учитывается конструкцией опоры, на которой закрепляются провода.

Изоляция и перенапряжение в электрических сетях

1. Общая характеристика внешней изоляции

2. Коронный разряд на линиях электропередачи

3. Разряд в воздухе вдоль поверхности твердого диэлектрика

4. Линейные и аппаратные изоляторы

5. Изоляция воздушных линий электропередачи и распределительных устройств

6. Общая характеристика внутренней изоляции

7. Молния как источник грозовых перенапряжений

8. Защита от прямых ударов молнии

9. Заземление в электрических установках высокого напряжения

10. Защитные разрядники

11. Грозозащита линий электропередачи

1. Общая характеристика внешней изоляции

К внешней изоляции установок высокого напряжения относят изоляционные промежутки между электродами (проводами линий электропередачи (ЛЭП), шинами распределительных устройств (РУ), наружными токоведущими частями электрических аппаратов и т.д.), в которых роль основного диэлектрика выполняет атмосферный воздух. Изолируемые электроды располагаются на определенных расстояниях друг от друга и от земли (или заземленных частей электроустановок) и укрепляются в заданном положении с помощью изоляторов.

При нормальных атмосферных условиях электрическая прочность воздушных промежутков относительно невелика.

В большинстве изоляционных конструкций при приложении высокого напряжения возникает резко неоднородное электрическое поле. Электрическая прочность в таких полях при расстоянии между электродами 1-2 м составляет приблизительно 5 кВ/см, а при расстояниях 10-20 м снижается до 2,5-1,5 кВ/см. В связи с этим габариты воздушных ЛЭП и РУ при увеличении номинального напряжения быстро возрастают.

Целесообразность использования диэлектрических свойств воздуха в энергетических установках разных классов напряжения объясняется меньшей стоимостью и сравнительной простотой создания изоляции, а также способностью воздушной изоляции полностью восстанавливать электрическую прочность после устранения причины пробоя разрядного промежутка.

Для внешней изоляции характерна зависимость электрической прочности от метеорологических условий (давления p, температуры Т , абсолютной влажности Н воздуха, вида и интенсивности атмосферных осадков), а также от состояния поверхностей изоляторов, т.е. количества и свойства загрязнений на них. В связи с этим воздушные изоляционные промежутки выбирают так, чтобы они имели требуемую электрическую прочность при неблагоприятных сочетаниях давления, температуры и влажности воздуха.

Электрическую прочность вдоль изоляторов наружной установки измеряют в условиях, соответствующих разным механизмам разрядных процессов, а именно, когда поверхности изоляторов чистые и сухие, чистые и смачиваются дождем, загрязнены и увлажнены. Разрядные напряжения, измеренные при указанных состояниях, называю соответственно сухоразрядными, мокроразрядными и грязе- или влагоразрядными.

Основной диэлектрик внешней изоляции - атмосферный воздух - не подвержен старению, т.е. независимо от воздействующих на изоляцию напряжений и режимов работы оборудования его средние характеристики остаются неизменными во времени.

Важной особенностью внешней изоляции является ее способность восстанавливать свою электрическую прочность после устранения причины пробоя.Однако электрическая прочность внешней изоляции зависит от атмосферных условий: давления, температуры и влажности воздуха. На электрическую прочность изоляторов наружной установки влияют также загрязнения их поверхности и атмосферные осадки.

Основной диэлектрик внешней изоляции - атмосферный воздух - не подвержен старению, т.е. независимо от воздействующих на изоляцию напряжений и режимов работы оборудования его средние характеристики остаются неизменными во времени.

2.Коронный разряд на линиях электропередачи

Коронный разряд — это самостоятельный газовый разряд, возникающий в резко неоднородных полях у электродов с большой кривизной поверхности (острия, тонкие провода). Зона вблизи такого электрода характеризуется значительно более высокими значениями напряженности поля по сравнению со средними значениями для всего промежутка. Когда напряжённость поля достигает предельного значения (для воздуха около 30 кВ/см), вокруг электрода возникает свечение, имеющее вид короны. При коронном разряде ионизационные процессы происходят только вблизи коронирующего электрода. Коронный разряд возникает при сравнительно высоком давлении воздуха (порядка атмосферного).

Наши рекомендации