Введем зависимость для целевой функции

• Курсор в F4.

• Курсор на кнопку Мастер функций.

На экране диалоговое окно Мастер функций шаг 1 из 2.

• Курсор в окно Категория на категорию Математические.

Рис.15. Вводится функция для вычисления целевой функции

• Курсор в окно Функции на СУММПРОИЗВ.

• В массив 1 ввести[3] В$3:E$3.

• В массив 2 ввести В4:E4.

• Готово.На экране: в F4 введена функция, как показано на Рисунке 15.

4. Введем зависимость для левых частей ограничений:

• Курсор в F4.

• Копировать в буфер.

• Курсор в F7.

• Вставить из буфера.

• Курсор в F8.

• Вставить из буфера.

• Курсор в F9.

• Вставить из буфера.

На этом ввод зависимостей закончен.

Запуск Поиска решения.

6) Назначение целевой функции (установить целевую ячейку).

¨ Курсор в поле Установить целевую ячейку.

¨ Ввести адрес $F$4.

¨ Ввести направление целевой функции: Максимальному значению.

Ввести адреса искомых переменных:

¨ Курсор в поле Изменяя ячейки.

¨ Ввести адреса В$3:E$3.

Ввод ограничений.

Курсор в поле Добавить. Появится диалоговое окно Добавление ограничения (Рис. 16.).

Рис.16. Ввод правых и левых частей ограничений.

· В окне Ссылка на ячейку ввести $F$7.

· Ввести знак ограничение £..

· Курсор в правое окно.

·Вести $H$7.

· Добавить. На экране опять диалоговое окно Добавление ограничения. Ввести остальные ограничения.

· После ввода последнего ограничения ввести ОК.

На экране появится диалоговое окно Поиск решения с введенными условиями (Рис.17).

Рис.17. Введены все условия для решения задачи.

8) Ввод параметров для решения ЗЛП (Рисунок 18).

§ Открыть окно Параметры поиска решения.

§ Установить флажок Линейная модель, что обеспечивает применение симплекс-метода.

§ Установить флажок Неотрицательные значения.

§ ОК(На экране диалоговое окно поиска решения).

§ Выполнить(На экране диалоговое окно результаты поиска решения – Рисунок 19.).

Рис. 18. Ввод параметров

Рис.19. Решение найдено

Полученное решение означает, что максимальный доход 150 тыс. руб. фабрика может получить при выпуске 30 ковров второго вида и 10 ковров третьего вида. При этом ресурсы труд и оборудование будут использованы полностью, а из 480 кг пряжи (ресурс сырье) будет использовано 280 кг.

Создание отчета по результатам поиска решения

Excel позволяет представить результаты поиска решения в форме отчёта. Существует три типа таких отчетов:

§ Результаты (Answer). В отчет включаются исходные и конечные значения целевой и влияющих ячеек, дополнительные сведения об ограничениях

§ Устойчивость (Sensitivity). Отчет, содержащий сведения о чувствительно­сти решения к малым изменениям в изменяемых ячейках иди в формулах ограничений.

§ Пределы (Limits). Помимо исходных и конечных значений изменяемых и целевой ячеек в отчет включаются верхние и нижние границы значений, которые могут принимать влияющие ячейки при соблюдении ограничений.

1. Отчет по результатам.

Отчет по результатам    
Целевая ячейка (Максимум)    
  Ячейка Имя Исходно Результат
  $F$4 коэф. в ЦФ ЦФ
Изменяемые ячейки    
  Ячейка Имя Исходно Результат
  $B$3 значение Х1
  $C$3 значение Х2
  $D$3 значение Х3
  $E$3 значение Х4
         
         
Ограничения      
  Ячейка Имя Значение Формула
  $F$7 труд левая часть $F$7<=$H$7
  $F$8 сырье левая часть $F$8<=$H$8
  $F$9 оборудование левая часть $F$9<=$H$9

В отчете по результатам содержатся оптимальные значения переменных Х1, Х2, Х3, Х4 , которые соответственно равны 0,10, 30,0; значение целевой функции – 150, а также левые части ограничений.

Решение двойственной задачи можно найти в отчете Поиска решений. Отчет по устойчивости. Теневые цены ресурсов труд, сырье и оборудование соответственно равны 4/3, 0, 1/3 или в десятичных дробях 1.3333, 0, 0.3333.

Отчет по устойчивости        
Изменяемые ячейки          
      Результ. Нормир. Целевой Допустимое Допустимое
  Ячейка Имя Значение Стоимость Коэффициент Увеличение Уменьшение
  $B$3 Значение Х1 -7 1E+30
  $C$3 Значение Х2
  $D$3 Значение Х3 1.75
  $E$3 Значение Х4 -9.667 9.667 1E+30
Ограничения          
      Результ. Теневая Ограничение Допустимое Допустимое
  Ячейка Имя Значение Цена Правая часть Увеличение Уменьшение
  $F$7 труд левая часть 1.333
  $F$8 сырье левая часть 1E+30
  $F$9 Оборудование левая часть 0.333

Проведем анализ полученного оптимального решения исходной задачи с помощью двойственных оценок.

1) Анализ использования ресурсов в оптимальном плане выполняется с помощью соотношений второй теоремы двойственности.

Ресурсы труд и оборудование имеют отличные от нуля оценки 4/3 и 1/3 – эти ресурсы полностью используются в оптимальном плане, являются дефицитными, сдерживающими рост целевой функции. Правые части этих ограничений равны левым частям.

1 +2Х2 +2Х3 +6Х4 80

1 +4Х23 +8Х4 130

7´0 +2´30 +2´10 +6´0=80=80

2´0 +4´30 +1´10 +8´0=130=130

Ресурс сырье используется не полностью (280<480), поэтому имеет нулевую двойственную оценку (Y2=0).

1 +8Х2 +4Х3 +3Х4 480

5´0 +8´30 +4´10 +3´0=280<480

Этот ресурс не влияет на план выпуска продукции.

Общая стоимость используемых ресурсов при выпуске 30 ковров второго вида и 10 ковров третьего вида составит 150 тыс. руб.

g = 80 ´Y1 + 480´Y2 + 130´Y3 =80 ´4/3 +480´0+130´1/3 =150 тыс. руб.

По условию (4) не использованный полностью в оптимальном плане ресурс по­лучает нулевую оценку. Нулевая оценка ресурса свидетель­ствует о его не дефицитности. Ресурс не дефицитен не из-за его неограниченных запасов (они ограничены величиной bi), а из-за невозможности его полного использования в опти­мальном плане. Так как суммарный расход недефицитного ресурса меньше его общего количества, то план производст­ва им не лимитируется. Данный ресурс не препятствует и дальше максимизировать целевую функцию f(X).

Заметим, что ценность различных видов ресурсов нельзя отождествлять с действительными ценами, по которым осуществляется его закупка. В данном случае речь идет о некоторой мере, имеющей экономическую природу, которая характеризует ценность ресурса только относительно полу­ченного оптимального решения.

2) Анализ эффективности отдельных вариантов плана выполняется на основе соотношений из 2 теоремы двойственности.

Если изделие вошло в оптимальный план (Xj >0), то в двойственных оценках оно не убыточно, то есть, стоимость ресурсов, затраченных на производство единицы изделия равна его цене. Такие изделия эффективны, выгодны с точки зрения принятого критерия оптимальности. В нашей задаче это ковры второго и третьего видов.

Если стоимость ресурсов, затраченных на производство одного изделия больше его цены, то это изделие не войдет в оптимальный план из-за его убыточности. В нашей задаче в план выпуска не вошли ковры первого и четвертого видов, потому что затраты по ним превышают цену на 7 (10-3) тыс. руб. и 9.666 (10.666-1) тыс. руб. соответственно. Это можно подтвердить, подставив в ограничения двойственной задачи оптимальные значения вектора Y.

7 ´4/3 + 5´0+ 2´1/3=30/3=10 >3

2 ´4/3 + 8´0+ 4´1/3=12/3= 4= 4

2 ´4/3 + 4´0+ 1´1/3= 9/3= 3= 3

6´4/3 + 3´0+ 8´1/3=32/3= 10.666 > 1

Разницу между правыми и левыми частями ограничений двойственной задачи можно найти в Отчете по устойчивости в столбце Нормируемая стоимость.

2) Анализ влияния изменения правых частей ограничений на значения целевой функции (Чувствительность решения к изменению запасов сырья).

Предположим, что запас сырья ресурса «труд» изменился на 12 единиц, т. е. теперь он составляет 80 + 12 = 92 единиц. Из теоремы об оценках, известно, что колеба­ние величины bi приводит к увеличению или уменьшению f(X). Оно определяется величиной yi в случае, когда при изменении величин bi значения переменных yi в оптималь­ном плане соответствующей двойственной задачи остаются неизменными. В нашей задаче увеличение запасов ресурса «труд» приведет к увеличению значения целевой функции на 16 тыс. руб.(Df(x)= Db1´ y1 =12´4/3 = 16).Для двойственных оценок оптимального плана весьма существенное значение имеет их предельный характер. Точной мерой влияния ограничений на функционал оцен­ки являются лишь при малом приращении ограничения. Известно, что оценки не меняют своей величины, если не меняется набор векторов, входящих в базис оптимального плана, тогда как интенсивность этих векторов (значения неиз­вестных) в плане могут меняться.

Поэтому необходимо знать такие интервалы изменения каждого из свободных членов системы ограниче­ний исходной ЗЛП, или интервалы устойчивости двойственных оценок, в которых оптимальный план двойст­венной задачи не менялся бы. Эту информацию можно получить из Отчета по устойчивости. В нашей задаче в ниже приведенном фрагменте отчета видно, что запасы дефицитных ресурсов труд и оборудование могут быть, как уменьшены, так и увеличены, увеличение запаса ресурса сырье не повлияет на план выпуска продукции.

Ограничение Допустимое Допустимое
правая часть Увеличение уменьшение
1E+30

После увеличения запаса ресурса труд до 92 чел/ часов было получено новое решение задачи. Изменение запасов ресурсов в пределах интервалов устойчивости двойственных оценок привело не только к изменению значения целевой функции на 16 тыс. руб., но и к изменению плана выпуска. При этом структура плана не изменилась - изделия, которые были убыточны не вошли и в новый план выпуска, т.к. цены на ресурсы не изменились. Новый план выпуска составляет 28 ковров второго вида и 18 ковров третьего вида. Изменение общей стоимости продукции на 16 тыс. руб. (24-8=16) получено за счет уменьшения на 2 единицы ковров второго вида по цене 4 тыс. руб. (4 тыс. руб.´(28-30)= -8 тыс. руб.) и увеличения на 8 единиц ковров третьего вида по цене 3 тыс. руб. (3 тыс. руб.´(18-10)= 24 тыс. руб.).

Отчет по устойчивости 2        
Изменяемые ячейки          
      Результ Нормир. Целевой Допустимое Допустимое
  Ячейка Имя значение Стоимость коэффициент увеличение уменьшение
  $B$3 значение Х1 -7 1E+30
  $C$3 значение Х2
  $D$3 значение Х3 1.75
  $E$3 значение Х4 -9.667 9.667 1E+30
Ограничения          
      Результ Теневая Огранич. Допустимое Допустимое
  Ячейка Имя значение цена правая часть увеличение уменьшение
  $F$7 труд левая часть 1.333
  $F$8 сырье левая часть 1E+30
  $F$9 оборудование левая часть 0.333

[1] Примечание:Адреса ячеек во все диалоговые окна удобно вводить не с клавиатуры, а протаскивая мышь по ячейкам, чьи адреса следует ввести.

[2] Относительные и абсолютные ссылки. В зависимости от выполняемых задач в Excel можно использовать относительные ссылки, определяющие положение ячейки относительно положения ячейки формулы, или абсолютные ссылки, которые всегда указывают на конкретные ячейки. Если перед буквой или номером стоит знак доллара, например, $A$2, то ссылка на столбец или строку является абсолютной. Относительные ссылки автоматически корректируются при их копировании, а абсолютные ссылки — нет.

[3] Адреса ячеек во все диалоговые окна удобно вводить не с клавиатуры, а протаскивая мыщь по ячейкам, чьи адреса следует ввести.

Наши рекомендации