Построить модель вида, рассчитав соответствующие структурные коэффициенты.

Системы линейных одновременных уравнений

Задания

1) построить модель вида, рассчитав соответствующие структурные коэффициенты. Исходные данные представлены в таблице 8.23.

2)оценить параметры модели – I Клейна, используя данные таблицы 8.24.

где - потребление;

- текущий и лаговый незарплатный доход (прибыль), долл. США;

- заработная плата работников занятых в частном секторе, долл. США;

- заработная плата работников занятых в государственном секторе, долл. США;

- запас капитала на начало года, долл. США;

- чистые инвестиции, долл. США;

- текущий и лаговый частный продукт (равен НД + косвенные налоги на бизнес - );

Реализация типовых заданий

Построить модель вида, рассчитав соответствующие структурные коэффициенты.

Составим систему структурных уравнений:

.

Для выбора метода оценки параметров проверим систему на идентифицированность.

Таблица 8.23 – Исходные данные для построения системы взаимозависимых уравнений

Годы Годовое потребление свинины на душу населения, кг Оптовая цена за 1 кг свинины, р. Доход на душу населения, р. Расходы по обработке мяса, % к цене
5,0
4,0
4,2
5,0
3,8
Итого 22,0

Необходимое условие:

В модели 2 предопределенные переменные: , и такое же количество эндогенных переменных: и . Следовательно, М=2 и К=2.

Проверим необходимое условие для каждого уравнения системы.

Для первого уравнения:

k1=2; m1=1

M-m1=1=k-1=1 следовательно, уравнение точно идентифицировано.

Для второго уравнения:

k2=2; m2=1

M-m2=1=k-1=1 следовательно, уравнение точно идентифицировано.

Так как оба уравнения точно идентифицированы, система в целом тоже точно идентифицирована.

Достаточное условие:

Для того чтобы уравнение было точно идентифицируемым, достаточно чтобы ранг матрицы А (матрица коэффициентов при переменных, не входящих в данное уравнение) был равен (К-1).

Так в нашем примере система состоит только из двух уравнений, то данное условие не проверяется.

Для определения параметров точно идентифицированной модели применяется КМНК.

На первом этапе структурную форму преобразуем в приведенную форму:

.

Параметры модели А11, А12, А21, А22 определяются с помощью традиционного МНК. Найдем данные параметры используя функцию Excel Сервис– Анализ данных– Регрессия (при этом необходимо учесть, что в уравнениях отсутствует свободный член). Результаты регрессионного анализа приведенной формы представлены на рисунке 8.42.

Рисунок 8.42 – Результаты регрессионного анализа уравнений приведенной формы

Следовательно, приведенная форма примет вид:

.

На следующем этапе определим коэффициенты структурной модели.

В первом уравнении структурной формы в правой части присутствуют переменные и . Следовательно, необходимо из второго уравнения выразить переменную через переменные и . Получим: . Подставим полученное выражение в первое уравнение и приведем подобные слагаемые:

Во втором уравнении структурной формы в правой части присутствуют переменные и . Следовательно, необходимо из первого уравнения выразить переменную через переменные и . Получим: . Подставим полученное выражение в первое уравнение и приведем подобные слагаемые: Таким образом, структурная форма модели примет вид:

.

Рассчитаем по полученным уравнениям теоретические значения и . Результаты расчетов представлены на рисунке 8.43.

Рисунок 8.43 – Фактические и расчетные значения переменных и

Наши рекомендации