Компенсация реактивной мощности; средства компенсации реактивной мощности

Индуктивной реактивной нагрузке, создаваемой электрическими потребителями, можно противодействовать с помощью ёмкостной нагрузки, подключая точно рассчитанный конденсатор. Это позволяет снизить реактивную мощность, потребляемую от сети и называется корректировкой коэффициента мощности или компенсацией реактивной мощности.

18. Екі жақты қондырғыны есептеу

У стрелочных измерительных приборов имеется шкалы,

которые могут быть именованными, т.е. градуированными в единицах измеряемых величин, или условными. Условные шкалы применяют в многопредельных приборах.

Чтобы узнать численное значение измеряемой величины по прибору с условной шкалой, надо цену деления шкалы умножить на число делений, отсчитанных по этой шкале до того места, где остановилась стрелка. Напомним, что для нахождения цены деления нужно найти разность между значениями ближайших "оцифрованных" делений и разделить на число делений между ними.

Шкалы приборов бывают нулевые и безнулевые. Нулевые шкалы могут быть односторонними (нуль размещен в начале шкалы) или

двухсторонними (нуль размещен между начальной и конечной отметками). В зависимости от положения нуля между конечными отметками двухсторонние шкалы бывают симметричными и несимметричными.

На безнулевых шкалах конечные отметки соответствуют нижнему и верхнему пределам измерения.

По характеру зависимости линейных или угловых расстояний между соседними отметками шкалы от измеряемой величины различают равномерные, неравномерные и другие шкалы. Для точности измерений предпочтительнее равномерная шкала. Шкала считается равномерной, если отношение наибольшего деления к наименьшему не превышает 1,3 при постоянной цене деления.

Рядом со шкалой на лицевой стороне электроизмерительного прибора указывают необходимые маркировочные признаки:

единица измеряемой величины; класс точности; номер ГОСТа, в соответствии с которым прибор изготовлен; род тока и число фаз; система прибора; категория защищенности прибора от влияния внешних магнитных или электрических полей; группа прибора по условиям эксплуатации; рабочее положение прибора; испытательное напряжение прочности электрической изоляции токоведущих частей прибора;

положение прибора относительно земного магнитного поля (если это влияет на его показания); номинальная частота тока (если она отличается от 50 Гц); год выпуска; тип (шифр); заводской номер и некоторые другие данные.

19. Сымдардың ауа арқылы берілетін электр желісінің механикалық жолмен есептеу тәсілдері

Асқын кернеулер коммутациялық (ішкі) және Атмосфералық (сыртқы) түрлерге бөлінеді. Біріншісі, электр энергетикалық жүйе режимінің күрт өзгеруі (қысқа тұйықталулар және оларды ажыратып тастау, жүктеменің күрт азаюы, т.б.) кезінде туатын өтпелі процестер жүруінен пайда болады. Бұл асқын кернеулер оқшауламаға қысқа мерзімде (секундтың жүзден бір бөлігінен ондаған секунд бойы) әрекет етеді, олардың шамасы номиналь кернеулерден бірнеше есе асуы мүмкін. Атмосфералық асқын кернеулер: найзағайдың электр қондырғысына тікелей түсуі кезінде (нысан арқылы найзағай тогының өтуінен) пайда болатын көтерілген асқын кернеу және найзағай кезіндегі электр разряды тудыратын электрмагниттік өрістің күрт өзгеруінен электр жабдықтарында индукцияланатын тума асқын кернеу болып ажыратылады. Атмосфералық асқын кернеулердің әрекет ету уақыты өте қысқа импульс түрінде өтеді (секундтың бірнеше бөлігінен жүз миллионнан бір бөлігіне дейін), бірақ олардың шамасы арнайы қорғаныс шараларын қарастырмаған жағдайда миллиондаған вольтқа жетуі мүмкін. Мұндай жоғары кернеулерге ешқандай оқшаулау құралымы төтеп бере алмайды.

Сондықтан олардың шамаларын арнайы құрылғылар (разрядтауыштар, асқын кернеулерді шектеуіштер) көмегімен оқшауламаға қауіпсіз деңгейге дейін шектейді. Кез келген оқшауламалық жүйеде оқшауламаның құрамдас бөлігі ретінде ауа немесе газ қолданылады. Мысалы, әуе электр желілерінің сымдары, тарату құрылғыларының, трансформаторлар мен жоғары вольтті басқа да аппараттардың шиналары бір-бірінен ауа кеңістігі арқылы, ал құралымдық бөліктері бір-бірінен қатты диэлектриктен (электртехникалық фарфор, шыны, целлюлоза өнімдері, пластмасса, т.б.) жасалынған оқшаулатқыштар көмегімен оқшауланады. Сонымен бірге ауа немесе белгілі бір газ көптеген электр жабдықтарының (кабельдердің, конденсаторлардың, трансформаторлардың, т.б.) негізгі оқшауламалаушы материалы ретінде де жиі қолданылады. Соңғы жылдары оқшаулама техникасында электрлік беріктігі (диэлектрикті тесіп өтетін кернеу шамасының электродтардың ара қашықтығына қатынасы) жоғары газдар – элегаз (алты фторлы күкірт – SҒ6) және фреон (дихлордифторметан – ССҚ2Ғ2) кеңінен қолданылуда. Олардың электрлік беріктігі ауамен салыстырғанда 2,4 – 2,6 есе артық. Мұнайдан алынатын және синтет. сұйық диэлектриктер электр жабдықтары мен аппараттарының ток өтер бөліктерін оқшаулау, салқындату мақсаттарында кеңінен қолданылады (трансформатор, конденсатор, кабель майлары, т.б.). Жоғары кернеу техникасының басқа бір маңызды мәселесі – жоғары вольттік қондырғыларда пайда болатын тәждік разряд пен жоғары жиілікті сәуле шығаруды зерттеу.

Аса жоғары кернеулі әуе желілері сымдарындағы тәждік разряд есебінен едәуір энергия босқа шығындалады әрі байланыс желілері мен арналарына кедергі жасайтын жоғары жиілікті радиобөгеуілдер мен акустикалық шуыл пайда болады. Аталған шығындарды шектеудің бірден-бір жолы – сымдардың диаметрлерін өсіру және олардың кеңістікте өзара орналасу ара қашықтықтарын дұрыс таңдау. Ол үшін аса жоғары кернеулі желілерде біртұтас сымның орнына фазалары бірнеше сымға тарамдалған (фазадағы сымдардың өзара қашықтығы, әдетте, 40 – 50 см) құралымдар қолданылады (330 кВ кернеулі фаза – 2 сымға, 500 кВ кернеулі фаза – 3 сымға, 750 кВ кернеулі фаза – 4 сымға, 1150 кВ кернеулі фаза – 8 сымға тарамдалады). Мысалы, Қазақстанда салынған 500 кВ-тық әуе желілерінің фазалары 3 сымнан, ал кернеуі 1150 кВ-тық “Екібастұз – Көкшетау – Қостанай” әуе желісінің фазалары 8 сымнан құралған. Тұрақты ток желілерінде тәждік разряд әсерінен босқа шығындалатын энергия айнымалы токтағыдан едәуір аз. Сондай-ақ, тұрақты ток желілерінде асинхронды жұмыс істейтін электр жүйелерін өзара қосу мүмкіншілігі бар. Тұрақты ток желілерін пайдалану тек экономикалық тұрғыдан ғана тиімсіздеу.

Жоғары кернеу техникасына сонымен бірге жоғары кернеулі сынақтық және өлшеуіштік құрылғылардың қондырғыларын құрастыру да жатады. Жоғары кернеу техникасының жеке бір саласы – газдарды тазалау жүйелерінде, бояу және басқа жұмыстарда пайдаланылатын электрондық иондық технология. Мысалы, жоғары кернеулі тәждік разряд көмірмен жұмыс істейтін электрстансаларынаа, металлургия, цемент, химия және басқа бірқатар кәсіпорындарда ауаны тазартатын электр сүзгілерде қолданылады. Қазақстанда Алматы энергетика және байланыс институтының жоғары кернеулер техникасы лаб-нда жоғары және аса жоғары кернеулерге арналған әр түрлі оқшауламаларды, оқшаулатқыштарды сынауға және зерттеулерге арналған сынақ кернеуі 1000 кВ-қа дейінгі импульстік кернеулер генераторы, 300 кВ-қа дейінгі тұрақты ток генераторы және кернеуі 350 кВ-қа дейінгі айнымалы ток генераторы орнатылған.

20. Электрэнергия шамаларының сапалылығына қойылатын талаптар

Качество электрической энергии — степень соответствия параметров электрической энергии их установленным значениям[1]. В свою очередь, параметр электрической энергии — величина, количественно характеризующая какое-либо свойство электрической энергии. Под параметрами электрической энергии понимают напряжение, частоту, форму кривой электрического тока. Качество электрической энергии является составляющей электромагнитной совместимости, характеризующей электромагнитную среду.

Качество электрической энергии может меняться в зависимости от времени суток, погодных и климатических условий, изменения нагрузки энергосистемы, возникновение аварийных режимов в сети и т.д.

Снижение качества электрической энергии может привести к заметным изменениям режимов работы электроприёмников и в результате уменьшению производительности рабочих механизмов, ухудшению качества продукции, сокращению срока службы электрооборудования, повышению вероятности аварий.

В России показатели и нормы качества электрической энергии в электрических сетях систем электроснабжения общего назначения переменного трёхфазного и однофазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети или электроустановки потребителей устанавливаются Межгосударственным стандартом ГОСТ 32144-2013 "Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения"(от 22 июля 2013 г. N 400-ст).

В связи с развитием рыночныхотношений в электроэнергетике электроэнергию следует рассматривать не только как физическое явление, но и как товар, который должен соответствовать определённому качеству и требованиям рынка. Федеральный закон «Об электроэнергетике» определяет ответственность энергосбытовых организаций и поставщиков электроэнергии перед потребителями за надёжность обеспечения их электрической энергией и её качество в соответствии с техническими регламентами и иными обязательными требованиями.

Наши рекомендации