Эконометрическое исследование включает решение следующих проблем
1.
Эконометрика - это наука, которая на базе статистических данных дает количественную характеристику взаимозависимым экономическим явлениям и процессам. Слово «эконометрика» произошло от двух слов: «экономика» и «метрика» (от греч. «метрон» - «правило определения расстояния между двумя точками в пространстве», «метрия» — «измерение»). Эконометрика - это наука об экономических измерениях.
Основным предметом исследования эконометрики являются массовые экономические явления и процессы.
Основные эконометрические методы.
1. сводка и группировка информации;
Статистическая сводка - это научно организованная обработка материалов наблюдения, включающая в себя систематизацию, группировку данных, составление таблиц, подсчет итогов, расчет производных показателей (средних, относительных величин). Статистическая группировка - это процесс образования однородных групп на основе расчленения статистической совокупности на части или объединения изучаемых единиц в частные совокупности по существенным для них признакам.
2. вариационный и дисперсионный анализ;
Дисперсия признака - это средний квадрат отклонений вариантов от их средней величины. В эконометрических расчетах, как правило, используют общую, межгрупповую и внутригрупповую дисперсии. При этом общая дисперсия характеризует вариацию признака в статистической совокупности в результате влияния всех факторов. Межгрупповая дисперсия показывает размер отклонения групповых средних от общей средней, то есть характеризует влияние фактора, положенного в основание группировки. Внутригрупповая (остаточная) дисперсия характеризует вариацию признака в середине каждой группы статистической группировки.
В эконометрических расчетах используется среднее квадратическое отклонение - обобщающая характеристика размеров вариации признака в совокупности. Оно равно корню квадратному из дисперсии. Для осуществления сравнений колеблемости одного и того же признака в нескольких совокупностях используется относительный показатель вариации — коэффициент вариации.
2. регрессионный и корреляционный анализ;
Применение метода наименьших, квадратов (МНК) позволяет получить достаточно точные теоретические значения модели однофакторной регрессии и соответственно ее графическое изображение (термин "регрессия" - движение назад, возвращение в прежнее состояние, - был введен Фрэнсисом Галтоном в конце XIX века при анализе зависимости между ростом родителей и ростом детей; в любом случае средний рост детей - и у низких, и у высоких родителей -стремится (возвращается) к среднему росту людей в данном регионе).
3. статистические уравнения зависимости;
4. статистические индексы и др.
Статистические индексы могут быть использованы в качестве меры изменения количества независимо от изменения качественного признака (цены, себестоимости, производительности труда и т.п.), а также для характеристики качественного признака независимо от изменения количества (объема продукции в натуральном выражении, численности работников и т.п.).
2.
Модель – это приближенное описание реальных объектов, процессов, явлений в аспектах, интересующих исследователя.
классификация эконометрических моделей:
1) классификация эконометрических моделей по целевому назначению:
а) теоретико-аналитические модели, которые используются при исследовании общих свойств и закономерностей экономических процессов;
б) прикладные модели, которые используются при решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления);
Также эконометрические модели могут быть использованы при исследовании различных сторон народного хозяйства и его отдельных частей.
2) классификация эконометрических моделей по исследуемым экономическим процессам и содержательной проблематике. При этом выделяются:
а) модели народного хозяйства в целом и его отдельных подсистем-отраслей, регионов и т. д.;
б) комплексы моделей производства и потребления;
в) комплексы моделей формирования и распределения доходов;
г) комплексы моделей трудовых ресурсов;
д) комплексы моделей ценообразования;
е) комплексы моделей финансовых связей и др.
3) классификация эконометрических моделей на дескриптивные и нормативные модели:
а) дескриптивные модели предназначены для объяснения наблюдаемых фактов или для построения вероятностного прогноза. В качестве примера дескриптивной модели можно привести производственные функции и функции покупательного спроса, построенные на основе обработки статистических данных;
ести модели оптимального планирования, характеризующие тем или иным образом цели экономического развития, возможности и средства их достижения;
4) классификация эконометрических моделей по характеру отражения причинно-следственных связей. При этом выделяют:
а) модели жестко детерминистские;
б) модели, в которых учитываются факторы случайности и неопределенности.
Вследствие перехода от жёстко детерминированных моделей к моделям второго типа, были разработаны реальные возможности успешного применения более совершенной методологии моделирования экономических процессов, учитывающих факторы случайности и неопределённости, а именно:
а) проведение многовариантных расчетов и модельных экспериментов с вариацией конструкции модели и ее исходных данных;
б) изучение устойчивости и надежности получаемых решений;
в) выделение зоны неопределенности;
г) включение в модель резервов;
д) применение приемов, повышающих приспособляемость (адаптивность) экономических решений к вероятным и непредвиденным ситуациям
В последнее время широко применяются эконометрические модели, непосредственно отражающие стохастичность и неопределенность экономических процессов. Данные модели используют соответствующий математический аппарат: теорию вероятностей и математическую статистику, теорию игр и статистических решений, теорию массового обслуживания, теорию случайных процессов.
5) Классификация эконометрических моделей по способам отражения фактора времени. При этом выделяют:
а) статические модели, характеризующие исследуемую зависимость между переменными на определённый момент времени;
б) динамические модели, характеризующие изменение экономических процессов во времени.
выделяются два типа выборочных данных:
· Пространственная выборка (cross-sectional data) — набор экономических показателей, полученных в некоторый момент времени (иначе говоря, примерно в неизменных условиях), т.е. набор независимых выборочных данных из некоторой генеральной совокупности (так как практически независимость случайных величин проверить трудно, то обычно за независимые принимаются величины, не связанные причинно);
· Временной (динамический) ряд (time-series data) — выборка, в которой важны не только сами наблюдаемые значения, но и порядок их следования друг за другом. Чаще всего данные представляют собой последовательные наблюдения одной и той же величины в последовательные моменты времени.
3.
Весь процесс эконометрического моделирования можно разбить на шесть основных этапов.
1-й этап (постановочный) - определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли;
2-й этап (априорный) - предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации и исходных допущений, в частности относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез;
3-й этап (параметризация) - собственно моделирование, т.е. выбор общего вида модели, в том числе состава и формы входящих в неё связей между переменными;
4-й этап (информационный) - сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показателей;
5-й этап (идентификация модели) - статистический анализ модели и в первую очередь статистическое оценивание неизвестных параметров модели Непосредственно связан с проблемой идентифицируемости модели, то есть ответа на вопрос «Возможно ли в принципе однозначно восстановить значения неизвестных параметров модели по имеющимся исходным данным в соответст-вии с решением, принятым на этапе параметризации?». После положительного ответа на этот вопрос необходимо решить проблему идентификации модели то есть предложить и реализовать математически корректную процедуру оценивания неизвестных параметров модели по имеющимся исходным данным;
6-й этап (верификация модели) — сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.
Эконометрическое исследование включает решение следующих проблем
качественного анализа связей экономических переменных — выделения зависимых (yj) и независимых переменных (хi),
изучения соответствующего раздела экономической теории;
подбора данных;
спецификации формы связи между у и хi;
оценки параметров модели;
и т.д
4.
5.
Рассмотрим простейшую линейную модель парной регрессии: y = a+bx+ε
Величина y, рассматриваемая как зависимая переменная, состоит из двух составляющих: неслучайной составляющей, а+bх и случайного члена ε.
Случайная величина ε называется также возмущением. Она включает влияние не учтенных в модели факторов, случайных ошибок и особенностей измерения.
Причин существования случайной составляющей несколько.
1. Не включение объясняющих переменных. Соотношение между y и x является упрощением. В действительности существуют и другие факторы, влияющие на y, которые не учтены в форсуле. Влияние этих факторов приводит к тому, что наблюдаемые точки лежат вне прямой у = а+bх.
Часто встречаются факторы, которых следовало бы включить в регрессионное уравнение, но невозможно этого сделать в силу их количественной неизмеримости. Возможно, что существуют также и другие факторы, которые оказывают такое слабое влияние, что их в отдельности не целесообразно учитывать, а совокупное их влияние может быть уже существенным. Совокупность всех этих составляющих и обозначено в (2.1) через ε.
2. Агрегирование переменных. Рассматриваемая зависимость (2.1) – это попытка объединить вместе некоторое число микроэкономических соотношений. Так как отдельные соотношения, имеют разные параметры, попытка объединить их является аппроксимацией.Аппроксима́ция, или приближе́ние — научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми. Наблюдаемое расхождение приписывается наличию случайного члена ε.
3. Выборочный характер исходных данных. Поскольку исследователи чаще всего имеет дело с выборочными данными при установлении связи между у и х, то возможны ошибки и в силу неоднородности данных в исходной статистической совокупности. Для получения хорошего результата обычно исключают из совокупности наблюдения с аномальными значениями исследуемых признаков.
4. Неправильная функциональная спецификация. Функциональное соотношение между у и х математически может быть определено неправильно. Например, истинная зависимость может не являться линейной, а быть более сложной. Следует стремиться избегать возникновения этой проблемы, используя подходящую математическую формулу, но любая формула является лишь приближением истинной связи у и х и существующее расхождение вносит вклад в остаточный член.
5. Возможные ошибки измерения.
6.
Доказано, что для получения по МНК наилучших результатов (при этом оценки bi обладают свойствами состоятельности, несмещенности и эффективности) необходимо выполнение ряда предпосылок относительно случайного отклонения
Предпосылки использования метода наименьших квадратов (условия Гаусса – Маркова)
1. Случайное отклонение имеет нулевое математическое ожидание.