Норма прибыли (R) – это отношение прибыли к сумме вложенного капитала, т.е. отношение прибыли по акции к курсовой стоимости акции на начало периода.
R t = П t / C t – 1
· В столбце F подсчитать изменение стоимости акций (цена на конец периода минус цена на начало периода). Использовать автозаполнение.
· В столбце G подсчитать прибыль (рост стоимости акций плюс дивиденды).
· В столбце I подсчитать норму прибыли (прибыль за период делить на стоимость акций на начало периода).
· Для акций 2 типа все расчетные формулы можно скопировать в соответствующие ячейки.
2. Вычисление числовых характеристик нормы прибыли R
· среднее значение (ожидаемая норма прибыли) m R
это математическое ожидание (точнее говоря, оценка для него, получаемая по статистическим данным).
Использовать для данных столбца I функцию СРЗНАЧ.
· дисперсия Dx :
для статистической оценки дисперсии можно использовать функцию ДИСП.
Стандартное отклонение σ x : (корень из дисперсии).
· коэффициент вариации: CV = σ x / m R 100% .
3. Вычисление семихарактеристик для нормы прибыли R
Для этого нужны отклонения нормы прибыли R от ее ожидаемого значения, причем отклонения в меньшую сторону (мы оцениваем риск недополучения прибыли).
В столбце J подсчитать отклонения: R t – m R .
Для дальнейших расчетов семихарактеристик используются только отрицательные отклонения.
· В столбце K (“счетчики1”) - числа ai , позволяющие включать в расчеты только отрицательные отклонения: (Использовать функцию ЕСЛИ.)
· семидисперсия SDx :
Любая дисперсия – это среднее значение квадратов отклонений случайной величины от ее среднего значения.
Так как сейчас необходимы только отрицательные отклонение, можно использовать формулу со “счетчиками”. Тогда автоматически неотрицательные значения отклонений будут игнорироваться:
Для числителя использовать функцию СУММПРОИЗВ для столбцов J и K.
Семистандартное отклонение: Sσ x (корень из семидисперсии).
· коэффициент семивариации: SCV = ( Sσ x / m R) · 100% .
· Для акций 2 типа все расчеты аналогичны. Можно использовать копирование но исправить у семидисперсии ссылки на ячейки, по которым она подсчитывается.
4. Оценить вероятности неблагоприятных событий
· Для оценки вероятности получения прибыли меньше чем вычисленное ранее среднее значение (ячейка I32) можно использовать числа ai (столбец K –«счетчики1»). Искомая оценка для P(R ≤ m R) будет:
Для вычисления вероятности получения прибыли меньше чем половина среднего значения можно сначала построить ещё один счётчик (столбц L –«счетчики2»), а затем аналогично предыдущему получить оценку для P(R ≤ 0,5·m R) .
5. Выводы
Сравнивая подсчитанные для двух типов акций показатели, выбрать, какие из них обеспечивают наилучшее сочетание ожидаемой прибыли и степени риска.