Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку)

Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку), що виражає залежність результативної ознаки від однієї або кількох ознак-факторів і дає оцінку міри щільності зв’язку.

Статистичні зв'язки описуються в КРА шляхом побудови так зва­ної функції регресії (ФР), що найкращим чином, у смислі деякого критерію, наближає (апроксимує) значення залежної змінної. За та­кий критерій найчастіше вибирають мінімум суми квадратів відхи­лень (неув'язок) результатів спостережень залежної змінної (реалі­зацій) від значень, отриманих розрахунком за рівнянням регресії (РР) для тих самих значень фактора (факторів)**. При цьому вигляд ФР (структура моделі процесу) задається апріорі, на підставі уявлень про природу процесів, що пов'язують залежну та незалежні змінні, або підбирається у процесі обчислень (покрокова та гребенева регресії). В усіх варіантах мінімум суми квадратів неув'язок (звідси назва — метод найменших квадратів, або МНК) досягається шляхом підбору параметрів (коефіцієнтів) PP. Лінійну залежність двох змінних (лінійна однофакторна модель, або ЛОМ) зображають у вигляді:

Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку) - student2.ru

де Y. та X. — реалізації залежної та незалежної змінної у /-му спосте­реженні; Е. — похибка наближення (неув'язка, залишок).

Розв'язання задачі МНК було розпочато у працях Лежанра (1805), Гаусса (1809) та Маркова (1904). Відтоді теорія МНК суттєво розви­нулася, а завдяки комп'ютерним технологіям стало можливим вияв­ляти та описувати статистичні зв'язки за допомогою широкої гами моделей (лінійних та нелінійних). Кількість коефіцієнтів у лінійних багатофакторних моделях (ЛБМ)

Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку) - student2.ru

та в нелінійних багатофакторних моделях (НБМ)

Далі залежно від контексту будуть використовуватися синоніми: ознака, варіанта, відгук, результативна величина, залежна змінна.

В КРА використовуються також синоніми цього терміна: незалежна змінна, пре­диктор, регресор.

Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку) - student2.ru

де k = 0; / = 0; k Ф /, може сягати сотень і навіть тисяч найменувань і розв'язання таких громіздких систем рівнянь без високопродуктивних ЕОМ і ефективних алгоритмів неможливе. Не всі коефіцієнти регре-сійних моделей мають смислове наповнення, тобто модель є формаль­ною, але рівняння моделі можна використовувати для статистичного прогнозування (екстраполяції) — оцінювання очікуваного значення залежної змінної для значень предикторів, що перебувають поза інтер­валом їх спостереження. Коефіцієнти, що стоять при перших степе­нях регресорів в описаних моделях, виражаються через вибіркові коефіцієнти лінійних парних кореляцій між регресорами (познача­ються г, або р), а саме рівняння регресії з їх допомогою може бути записане через кореляційну матрицю гхх (позначається R) і вектор коефіцієнтів парної кореляції між регресорами та залежною змінною

Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку) - student2.ru

де: (З — вектор бета-коефіцієнтів регресійної моделі.

Коефіцієнт регресії є безрозмірною величиною, що змінюється в межах від -1 до +1. Рівність г = 0 означає відсутність лінійної за­лежності, але не виключає нелінійної. Чим ближче | г | до одиниці, тим "тісніший" лінійний зв'язок між двома випадковими величинами і тим менше СКВ подання кожної з них через лінійну функцію від іншої. Знак г визначає напрямок зв'язку (плюс — прямий, мінус — зворотний). Для ЛММ обчислюється також коефіцієнт множинної (сукупної) кореляції, який ще називається коефіцієнтом детермінації (позначається R2). Він показує, наскільки варіація результативної ве­личини зумовлена варіаціями всіх факторів. Знаючи г та г , можна розрахувати часткові коефіцієнти кореляції rYX(x } між результуючою величиною і кожним з факторів при елімінуванні (виключенні) впливу всіх інших факторів. Інакше кажучи, часткові коефіцієнти кореляції відображають ступінь "чистого" впливу факторної ознаки на резуль­туючу.

Алгоритм КРА має такий вигляд. На першому етапі за даними первісних спостережень (табл. 1) обчислюється симетрична матриця коефіцієнтів парної кореляції, або кореляційна матриця (КМ) (табл. 2).

Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку) - student2.ru
Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку) - student2.ru
Таблиця 1
Таблиця 2

Далі аналізується перший стовпчик (вектор) КМ на предмет вияв­лення незначущих зв'язків з використанням ґ-критерію. Виявлені у такий спосіб другорядні фактори видаляються (викреслюванням відпо­відних рядків і стовпчиків). Після цього стовпчики перетвореної KM, починаючи з другого, аналізуються на мультиколінеарність, тобто на залежність факторів один від одного. Справа в тому, що кореляція факторів збільшує похибки коефіцієнтів регресії, що робить рівнян­ня регресії непридатним для аналізу та прогнозування. За критерій мультиколінеарності беруть виконання таких нерівностей при доборі факторів для подальшого аналізу:

Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку) - student2.ru

Якщо ці нерівності (або хоч одна з них) не виконуються, то відки­дається той фактор, зв'язок якого з результуючою ознакою найменш щільний.

На другому етапі КРА обчислюється величина R2. Чим ближча вона до 1, тим менша роль неврахованих у моделі факторів і тим більше підстав для висновку, що модель повна й адекватно описує досліджуване явище.

На третьому етапі КРА будується власне функція регресії. Для лінійної моделі застосовується МНК [20]. Коефіцієнти нелінійних регресійних моделей розраховуються за допомогою ітераційного МНК або оптимізаційних методів [18]. Обчислювання коефіцієнтів регресії супроводжується оцінюванням їхньої значущості (статистично не­значущі коефіцієнти відкидаються, модель уточнюється) та диспер­сійним аналізом: оцінкою дисперсії результативної ознаки (повна дис­персія) та оцінкою дисперсії результатів спостережень (залишкова дисперсія). Різниця між цими величинами є часткою повної дисперсії, що пояснюється існуванням регресійних зв'язків між залежною і незалежними змінними. Крім того, обчислюється довірчий інтервал для відхилень розрахованої (емпіричної) кривої від дійсної (теоретич­ної) кривої регресії, що дає змогу побудувати так званий коридор помилок.

На четвертому етапі КРА створюється матриця часткових ко­ефіцієнтів кореляції, за якою можна оцінити ступінь елімінованого впливу факторів на результативну змінну. Як правило, часткові кое­фіцієнти кореляції виявляються меншими за парні. Це пояснюється тим, що з них виключено непряму частку впливу факторів на резуль­тативну змінну, яка зумовлена кореляцією факторів між собою.

Якщо КРА виконано правильно, "залишки" Е. розподіляються за нормальним ЗРЙ, а коефіцієнти рівняння регресії служать кількісни­ми оцінками впливу відповідного фактора на результативну ознаку при незмінності інших. Коефіцієнт детермінації свідчить про повноту впливів.

Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку) - student2.ru
де Sx та SY — стандартні помилки відповідно незалежної та залежної змінних.

Коефіцієнти регресії мають різні розмірності (одиниці вимірюван­ня), через що їх неможливо порівнювати, якщо виникло питання про порівняльну "силу" впливів факторів на результат. Щоб надати ко­ефіцієнтам регресії порівняльного вигляду, їх виражають у частках СКВ (так звані стандартизовані, або (З-коефіцієнти):

Крім того, для оцінки відносної зміни результативної змінної через зміну фактора використовують так званий коефіцієнт еластичності (КЕ)

Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку) - student2.ru

де риска означає усереднення за кількістью спостережень. Коефіцієнт еластичності показує, на скільки відсотків у середньому змінюється результативна змінна при зміні фактора на 1 %.

Слід зазначити, що на практиці використовують й інші характери­стики ступеня щільності статистичних зв'язків. Для малих вибірок застосовують коефіцієнт Фехнера. Для аналізу зв'язків між атрибу­тивними ознаками використовують коефіцієнти кореляції рангів Спірмена і тау-б Кендалла, асоціації Д. Юла, контингенції Пірсона. Коли тип розподілу досліджуваної ознаки невідомий, застосовують критерій серій та критерій інверсій (непараметричне оцінювання) [3] та ін.

.

Наши рекомендации