Геометрична інтерпретація задачі нелінійного програмування
Геометрично цільова функція (7.1) визначає деяку поверхню, а обмеження (7.2)-(7.3) – допустиму підмножину n-вимірного евклідового простору. Знаходження оптимального розв’язку задачі нелінійного програмування зводиться до відшукання точки з допустимої підмножини, в якій досягається поверхня найвищого (найнижчого) рівня.
Якщо цільова функція неперервна, а допустима множина розв’язків замкнена, непуста і обмежена, то глобальний максимум (мінімум) задачі існує.
Найпростішими для розв’язування є задачі нелінійного програмування, що містять систему лінійних обмежень та нелінійну цільову функцію. В цьому разі область допустимих розв’язків є опуклою, непустою, замкненою, тобто обмеженою.
Розглянемо приклад геометричного способу розв’язування задачі нелінійного програмування.
Приклад 7.1. Знайти мінімальне і максимальне значення функції:
за умов:
.
Розв’язання. Область допустимих розв’язків утворює чотирикутник АВСD (рис.7.1).
Рисунок 7.1
Геометрично цільова функція являє собою коло з центром у точці М(2;2), квадрат радіуса якого . Це означає, що її значення буде збільшуватися (зменшуватися) зі збільшенням (зменшенням) радіуса кола. Проведемо з точки М кола різних радіусів. Функція Z має два локальних максимуми: точки В(0;6) і С(8;0). Обчислимо значення функціонала в цих точках:
,
.
Оскільки , то точка С(8;0) є точкою глобального максимуму.
Очевидно, що найменший радіус , тоді:
.
Тобто точка М є точкою мінімуму, оскільки їй відповідає найменше можливе значення цільової функції.
Зазначимо, що в даному разі точка, яка відповідає оптимальному плану задачі (мінімальному значенню функціонала), знаходиться всередині багатокутника допустимих розв’язків, що в задачах лінійного програмування неможливо.
Приклад 7.2. Знайти мінімальне значення функції:
за умов:
.
Розв’язування. У даному прикладі множина допустимих розв’язків складається з двох окремих частин, необмежених зверху (рис.7.2).
Рисунок 7.2
Цільова функція аналогічно попередньому випадку є колом з центром у точці М(4;4). Функція Z має два локальних мінімуми: в точці А( ), і в точці В( ).
Значення функціонала в цих точках однакове і дорівнює:
.
Отже, маємо два альтернативні оптимальні плани.
Даний приклад ілюструє ще одну особливість задач нелінійного програмування: на відміну від задач лінійного програмування багатогранник допустимих розв’язків задачі нелінійного програмування не обов’язково буде опуклою множиною.
Наведемо основні особливості задач нелінійного програмування, що зумовлюють необхідність застосування відповідних методів їх розв’язання.