Моделдеу мен модел тұралы түсінік
Дәріс №2
Математикалық модельдер.Математикалық модельдермен зерттелетін объекті мен үрдістің қасиеттері, ерекшеліктері және сипаттамалары теңдеулер жүйелері, теңсіздіктер және функция арқылы көрсетіледі.
Көптеген математикалық модельдер универсалды болып келеді, яғни әртүрлі жүйелерді зерттеуге қолданылады. Математикалық модельдер қарастырылатын құбылыстар мен үрдістердің сандық заңдылықтарын анықтауға, сипатталатын факторлардың тәуелділігі мен өзара байланысын табуға мүмкіндік береді.
Математикалық модельдердің дамуына өте күрделі есептеулерді жүргізетін электронды-есептегіш машиналарының көбеюі зор ықпалетті.
Көптеген математикалық модельдер параметрлер мен айнымалылардан тұратын теңдеулер мен теңсіздіктер жүйелерінен тұрады. Айнымалы шамалар, мысалы, өндірілген өнім көлемі, капитал жұмсау, тасымалдау т.с.с., ал параметрлер өнімді өндіруге жұмсалған материал, уақыт, шикізат шығынының мөлшерін көрсетеді. Әрбір модельде айнымалылардың екі тобын көрсетуге болады.
1) Сыртқы айнымалылар – олардың мәндері модельден тыс және берілген;
2) Ішкі айнымалылар, олардың мәндері берілген модельді зерттеу қорытындысында анықталады.
Модельдеу үрдісінің нақты алгоритмі жоқ, бірақ модельдеу тәжірибесінде басшылықққа алатын анықталған принциптер бар.
Математикалық модельдердің құрылымдық және функционалдық түрлері бар. Құрылымдық модельдер жүйелердің құрылымын және оның элементерінің өзараәсерінзерттейді.
Функционалдықмодельдержүйеніңішкіқұрылысынабайланыссызәртүрліжағдайдағытәртібінталдайды.
Құрылымдық модельді оқып үйрену үстінде объектінің мазмұнын туралы, оның сыртқы жағдайларға әсері туралы информацияларды алуға болады. Ал функционалдық модельді зерттегенде объектінің әртүрлі реакцияларының сыртқы ортаға әсері туралы деректер алуға болады. Сонымен қатар объектінің құрылымын талдауға және құрылымдық модельдерді құруға мүмкіндіктер туады.
Экономикалық-математикалық модельдер жүйе жағдайын болашақты жоспарлау мен болжауға пайдаланады. Мұндай жағдайда модель оның негізінде қойылған белгілі бір алғы шарттарға сәйкес экономикалық үрдістердің ағымын көрсетеді. Жоспарлауменболжау модельдерінде алғышарттарды дұрыс таңдау ерекше маңызды роль атқарады. Модель есептің шарты дұрыс қойылған кезде ғана нақты жүйелердің құрылысы мен функциясын дұрыс сипатайды.
Экономикалық-математикалық модельдер сипаттаулы және оптималды болып бөлінеді.
Экономикалық жүйелердің сипаттаулы моделі есептерді математикалық формула түрінде көрсетеді және жүйе жағдайымен оның элементтерінің байланысын тереңірек ұғып үйренуге қолданылады.
Мұндай модельдерге халықшаруашылығы және экономикалық аудандардың салааралық байланысының матрицалық моделі жатады. Осындай типті есептің модельдері анықталған алғашқы мәліметтері бойынша бір ғана шешімі болады. Бұл модельдердің негізгі кемшілігі – ең тиімді (оптималды) шешімін іздейтін шарттың жоқтығы.
Оптималды модельдерде экономикалық есептің мағынасы математикалық формула түрінде жазылады және ең тиімді шешімі табылатын шарт функция түрінде көрсетіледі.
Математикалық модельдерде сызықтық және сызықтық емес тәуелділіктердің әртүрлі түрлері қолданылады.
Математикалық модельдеу үрдісінің негізгі бөлігіаппроксимация (жуықтау) – математикалық амалдарды (функция, теңдеу т.с.с.) басқа қарапайым шамалар арқылы жуықтап табу болып табылады. Аппроксимацияның көмегіменкүрделіесептердіжайесептерге, сызықтық емес теңдеулерді сызықтық теңдеулерге келтіреді.
Модельденетін обьектінің белгілі бір уақытқа немесе уақыт аралығына сәйкес қасиеттерін сипаттайтын математикалық модельдер статикалықдеп аталады.
Үрдістердің белгілі бір уақыт аралығындағы өзгерістерін зерттейтін модельдер динамикалықдеп аталады.
Детерминистикалық(латынша determino – анықтау) модельдер дегеніміз барлық параметрлері және сыртқы айнымалылары бірге тең ықтималдықпен анықталатын модельдер.
Ықтималдықмодельдерінде параметрлер мен сыртқы айнымалылар немесе олардың белгілі бір бөлігі тиісті ықтималдықтың үлестіруімен сипатталады. Анықталмағандықты есепке алатын модельдерге ықтималдық теориясының заңдарын қолдануға болмайды.
Бақылау сұрақтары:
1. Математикалық модельдер дегеніміз не?
2. Сыртқы айнымалылар дегеніміз не?
3. Ішкі айнымалылар дегеніміз не?
4. Статикалық модель дегеніміз не?
5. Динамикалық модель дегеніміз не?