Глава 3. характеристика основных типов статистических прогнозирующих математических моделей

В настоящей главе дается общая классификация и анализ статистических (вероятностных) математических моделей, используемых для краткосрочного и оперативного прогнозирования параметров объектов и процессов, в частности, электропотребления предприятий и энергосистем.

Подробно анализируются модели временных рядов, составляющие основу статистических прогнозирующих математических моделей случайных процессов, в частности: AR-, ARMA-, ARIMA-, МА-модель и модели взвешенного скользящего среднего, экспоненциального сглаживания Брауна и т.п. Как многофакторные рассматриваются: ARX-модели, ARMAX-модели и т.п. На реальных данных показана применимость ARIMA-моделей для прогноза графиков нагрузки энергосистем и предприятий. Однако структурную устойчивость данная модель сохраняет, если для приведения моделируемого процесса к стационарному виду используются разности порядка d<2.

Анализируются прогнозирующие модели функционирования объектов и систем, основанные на фильтрах Калмана и Винера (модель Заде – Рагаззини); спектральных ортогональных разложениях, в том числе, Карунена – Лоэва; каноническом разложении случайного процесса; многомерной регрессии; теории кластерного анализа; теории распознавания образов.

При статистической параметрической идентификации случайного процесса важен вопрос определения характеристик точности, полученных оценок параметров модели и их зависимость от объема предыстории. Эта информация необходима, например, для принятия решения об окончании идентификации объекта, а также при выборе той или иной модели. Наиболее полные данные об этом содержатся в многомерной плотности вероятности глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru оценки параметров глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru модели случайного процесса [9]. Однако, предполагая нормальность этого распределения вероятности, его без потери информации характеризуют числовыми характеристиками:

- математическим ожиданием глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru ;

- смещением глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru ;

- корреляционной матрицей глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru .

Косвенными характеристиками, определяющими желаемые свойства полученных параметров, являются [9, 10, 65]:

- несмещенность, показывающая, что для каждого параметра вектора глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru среднее значение по множеству реализаций совпадает с истинным значением параметра глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru : глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru или асимптотическая несмещенность: глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru ;

- состоятельность, определяющая, что оценка глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru с увеличением объема выборки или ростом j сходится по вероятности к истинному значению глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru :

глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru ,

или, иначе, состоятельность при асимптотической несмещенности определяет стремление к нулю дисперсии ошибок оценивания параметров

глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru ,

где глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru – след матрицы глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru ;

- эффективность, показывающая, что оценка параметров глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru в классе глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru всех несмещенных оценок параметров глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru обладает минимальной дисперсией:

глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru .

Если эффективность имеет место только при глава 3. характеристика основных типов статистических прогнозирующих математических моделей - student2.ru , то ее называют асимптотической.

Перечисленные характеристики являются определяющими факторами при выборе той или иной математической модели объекта и алгоритма идентификации в конкретных случаях.

Так, известно [9], что МНК при оценивании параметров динамических объектов приводит в общем случае к смещенным оценкам, но это не является полным препятствием к использованию этого метода. При малой интенсивности шумов точность оценивания параметров, как правило, оказывается достаточной для практических задач и т.д. Приведем краткое описание моделей, перечисленных на рис. 2.1.

Наши рекомендации