Понятие о выборочном наблюдении, его преимущества

Как известно, наблюдения по полноте охвата изучаемого явления подразделяются на сплошные и несплошные. Сплошное наблюдение, предполагающее исследование всех без исключения единиц изучаемой совокупности как правило связано с большими трудовыми и материальными затратами, требует большого количества времени, а иногда не может быть осуществимо или не имеет смысла. Нельзя, к примеру, проводить обследование качества изделий сплошным методом, если это связано с их уничтожением (испытание ткани на разрыв, электрических ламп на продолжительность горения). В связи с этим прибегают к несплошному наблюдению, т.е. обследованию лишь некоторой части, по которой можно судить о свойствах всей совокупности. Самым распространенным в статистической практике является выборочный метод. Суть выборочного наблюдения заключается в том, что обследованию подвергается часть единиц исследуемой совокупности, позволяющих по этой части единиц характеризовать совокупность в целом.

Выборочное наблюдение имеет ряд преимуществ и его применение обусловлено многими причинами:

ü Быстрота проведения наблюдения.

ü Обеспечение возможности лучше организовать наблюдение.

ü Исключаются или сводятся к минимуму ошибки наблюдения.

Выборочное наблюдение используется для ускорения обработки материалов сплошного наблюдения, для контроля данных сплошного наблюдения и в тех случаях, когда наблюдение связано с порчей или уничтожением продукции (испытание ткани на разрыв, электрических ламп на продолжительность горения и т.д.).

Этапы работы при проведении выборочного наблюдения:

ü постановка цели наблюдения;

ü составление программы наблюдения;

ü определение процента и способа отбора;

ü разрешение организационных вопросов наблюдения;

ü регистрация соответствующих признаков (по программе) у отобранной совокупности;

ü обобщение данных наблюдения

ü расчет ошибок выборки;

ü пересчет выборочных характеристик для всей совокупности.

Ошибки выборки

Совокупность из которой производится отбор, называется генеральной, (N - численность генеральной совокупности) а все ее обобщающие показатели, генеральными.

Совокупность отобранных единиц – выборочной совокупностью, все ее обобщающие показатели – выборочными, число отобранных единиц – n.

Основная задача выборочного наблюдения – на основе характеристик выборочной совокупности (средней и доли) получить достоверные суждения о показателях средней и доли в генеральной совокупности.

Вся изучаемая совокупность явлений (единиц) называется генеральной совокупностью (N - численность генеральной совокупности). Часть единиц, отобранная на основе разработанных принципов из генеральной совокупности, называется выборочной совокупностью (n).

Показатели Обозначение показателей в
Генеральной совокупности Выборочной совокупности
Численность единиц совокупности N n
Среднее значение признака Понятие о выборочном наблюдении, его преимущества - student2.ru Понятие о выборочном наблюдении, его преимущества - student2.ru
Дисперсия s2 S2
Среднее квадратическое отклонение s S
Доля P W

Средняя ( ) и доля ( ) генеральной совокупности будут несколько отличны от средней ( ) и доли ( ) в выборочной совокупности на некоторую величину m.: Понятие о выборочном наблюдении, его преимущества - student2.ru или Понятие о выборочном наблюдении, его преимущества - student2.ru ; Понятие о выборочном наблюдении, его преимущества - student2.ru или Понятие о выборочном наблюдении, его преимущества - student2.ru .

Интервал Понятие о выборочном наблюдении, его преимущества - student2.ru называется доверительным.

Величину отклонения или среднюю ошибку выборки можно определить по формулам:

Понятие о выборочном наблюдении, его преимущества - student2.ru , Понятие о выборочном наблюдении, его преимущества - student2.ru ,

где Понятие о выборочном наблюдении, его преимущества - student2.ru , Понятие о выборочном наблюдении, его преимущества - student2.ru - средняя ошибка выборочной средней и выборочной доли соответственно.

Показатели s и р генеральной совокупности нам неизвестны. Но в теории вероятностей доказано, что в случаях, когда объем выборки превышает 30, можно принять, что Понятие о выборочном наблюдении, его преимущества - student2.ru , таким образом, в практических расчетах средних ошибок выборки можно использовать формулы:

Понятие о выборочном наблюдении, его преимущества - student2.ru , Понятие о выборочном наблюдении, его преимущества - student2.ru

Чтобы определить уровень среднедушевого дохода в городе было обследовано 500 семей. Средний уровень составил 150 грн., дисперсия выборки – 1120, n=500, Понятие о выборочном наблюдении, его преимущества - student2.ru =150, S2=1120

Исчислим среднюю ошибку выборки: Понятие о выборочном наблюдении, его преимущества - student2.ru = Понятие о выборочном наблюдении, его преимущества - student2.ru =1,5,

Это значит, что среднедушевой доход населения города находится в пределах от 148,5 грн. (150-1,5) до 151,5 грн. (150+1,5).

Однако ошибка выборки имеют определенную вероятность возникновения. Это означает, что средняя в целом по генеральной совокупности, может находиться в указанных пределах, а может и не находиться. Доказано, что степень вероятности отклонения генеральных характеристик от выборочных – постоянная величина 0,683. Это значит, что в 683 случаях из 1000, средняя генеральной совокупности (х) не выйдет за пределы +- Понятие о выборочном наблюдении, его преимущества - student2.ru . А в остальных 317 случаях Понятие о выборочном наблюдении, его преимущества - student2.ru может отличаться от Понятие о выборочном наблюдении, его преимущества - student2.ru на величину, большую чем Понятие о выборочном наблюдении, его преимущества - student2.ru .

В нашем примере в 683 случаях среднедушевой доход лежит в пределах 148,5 < 150 < 151,5. В 317 случаях - может выйти за указанные пределы.

Если мы хотим повысить вероятность утверждения, можно расширить пределы, увеличив Понятие о выборочном наблюдении, его преимущества - student2.ru в некоторое количество раз. С увеличением Понятие о выборочном наблюдении, его преимущества - student2.ru в - t раз, увеличивается степень вероятности наших утверждений. Приведем некоторые известные нам из курса «Математическая статистика» значения вероятностей при разной величине так называемого коэффициента доверия - t.

Значения вероятностей соответствующие коэффициенту доверия.

t вероятность T вероятность t вероятность
1,0 0,6827 0,9545 2,7 0,9931
1,1 0,7287 2,5 0,9876 2,8 0,9949
1,7 0,9109 2,58 0,9900 3,0 0,9973
1,96 0,9500 2,6 0,9907 3,28 0,9990

Выделенные в таблице коэффициенты доверия с соответствующей степенью вероятности часто используются на практике.

Расширив в рассматриваемом примере пределы отклонений в 3,28 раз, получим следующий доверительный интервал:

150-3,28×1,5 Понятие о выборочном наблюдении, его преимущества - student2.ru 150 Понятие о выборочном наблюдении, его преимущества - student2.ru 150+3,28×1,5

145,08 Понятие о выборочном наблюдении, его преимущества - student2.ru 150 Понятие о выборочном наблюдении, его преимущества - student2.ru 159,92

т.е. в 999 случаях из тысячи средушевой доход будет находиться в указанных пределах.

С учетом коэффициента доверия t, доверительный интервал преображается и выглядит следующим образом:

Понятие о выборочном наблюдении, его преимущества - student2.ru

Величина Понятие о выборочном наблюдении, его преимущества - student2.ru обозначается D (греческая буква “дельта”) и носит название – предельная ошибка выборки.

Понятие о выборочном наблюдении, его преимущества - student2.ru

Формулы доверительных интервалов имеют вид:

Понятие о выборочном наблюдении, его преимущества - student2.ru ; Понятие о выборочном наблюдении, его преимущества - student2.ru ,

Поступила на склад партия товаров в количестве 20000 единиц. Выборочному обследованию подвергли качество 200 единиц. Из них 12 – бракованные. Какова доля брака всей продукции?

Мы имеем n=200, w=12/200=0,06. Доля брака в выборочной совокупности – 0,06 или на каждые 100 изделий – 6 бракованных. Для определения доли бракованной продукции в генеральной совокупности используем формулу Понятие о выборочном наблюдении, его преимущества - student2.ru = Понятие о выборочном наблюдении, его преимущества - student2.ru = Понятие о выборочном наблюдении, его преимущества - student2.ru Понятие о выборочном наблюдении, его преимущества - student2.ru = Понятие о выборочном наблюдении, его преимущества - student2.ru =0,0158

Мы получили Понятие о выборочном наблюдении, его преимущества - student2.ru ; или 0,06-0,0158 Понятие о выборочном наблюдении, его преимущества - student2.ru 0,06+0,0158.

Следовательно, с вероятностью 0,683, можно утверждать, что доля брака во всей продукции находится в пределах от 0,0442(0,06-0,0158) до 0,0758 (0,06+0,0158) или в 683 случаях из 1000 процент бракованных изделий в генеральной совокупности будет составлять в среднем от 4,4% до 7,6%.

Приведенные формулы для определения величины ошибки выборки дают возможность рассчитывать, какую необходимо взять численность выборки, чтобы ошибка выборки не превышала определенных заданных размеров.

Если Понятие о выборочном наблюдении, его преимущества - student2.ru , то Понятие о выборочном наблюдении, его преимущества - student2.ru , а n= Понятие о выборочном наблюдении, его преимущества - student2.ru ,

т.е. необходимая численность выборки при измерении средней равна среднему квадрату отклонений, деленному на квадрат допустимой ошибки выборки.

Если в формулу ввести коэффициент t, то она примет такой вид:

n= Понятие о выборочном наблюдении, его преимущества - student2.ru

При выборочном измерении доли признака средняя ошибка выборки определяется по формуле

Понятие о выборочном наблюдении, его преимущества - student2.ru , откуда n= Понятие о выборочном наблюдении, его преимущества - student2.ru ,

т.е. необходимая численность выборки равна доле, умноженной на дополнение ее до единицы и деленной на квадрат заданной точности.

Если в формулу ввести коэффициент t, то она примет такой вид:

Понятие о выборочном наблюдении, его преимущества - student2.ru

Чтобы определить средний размер платы за 1м2 арендуемой площади, обследовали 40 предприятий, рассчитан средний размер арендной платы – 30грн. за 1м2. Дисперсия составила – 60. Определить численность выборки, если с вероятностью 0,95 гарантировать, что размер ошибки выборки не будет превышать 1 грн.

Решение:

Из условия мы имеем Понятие о выборочном наблюдении, его преимущества - student2.ru - 60, D=1. В таблице … находим соответствующий вероятности 0,95 коэффициент доверия t=1,96. Для решения воспользуемся формулой:

n= Понятие о выборочном наблюдении, его преимущества - student2.ru = Понятие о выборочном наблюдении, его преимущества - student2.ru =230,4 предприятия.

Из 32 опрошенных предпринимателей высшее образование имеют – 11. Какова должна быть численность выборки, чтобы с вероятностью 0,99 предельная ошибка выборки не превышала 5% (т.е.0,05)

Решение:

Для расчета используем формулу: Понятие о выборочном наблюдении, его преимущества - student2.ru

По данным таблицы … находим, что вероятности 0,99 соответствует коэффициент доверия t=2.58, W=11/32,D=0,01

Понятие о выборочном наблюдении, его преимущества - student2.ru = Понятие о выборочном наблюдении, его преимущества - student2.ru =584 человека.

7.3. Способы отбора единиц,

подлежащих выборочному наблюдению

Результаты выборочного наблюдения в значительной степени определяются правильностью отбора отдельных единиц для последующего их описания. Для получения репрезентативной выборки применяют различные способы, использование которых зависит от характера исследуемых явлений. Различают четыре вида отбора: собственно-случайный, типический, механический и серийный.

При использовании собственно-случайного отбора единица попадает в выборку совершенно случайно: по жребию, лотерее, таблицам случайных чисел.

Типический отбор заключается в том, что все единицы генеральной совокупности предварительно распределяются на отдельные типичные группы по существенному для исследований признаку. В результате выборочная совокупность точнее воспроизводит генеральную совокупность.

Сущность механическогоотбора заключается в том, что единицы генеральной совокупности располагаются в каком-либо порядке (в хронологическом порядке, по географическому положению, по возрастанию или убыванию какого либо признака), а затем выбирают каждую 3, 10, 100, 257 ... единицу исходя из необходимого количества единиц в выборочной совокупности.

Сущность серийногоотбора заключается в том, что отбору подлежат не отдельные единицы генеральной совокупности, а целые серии таких единиц.

Каждый из способов имеет свои особенности, поэтому их часто сочетают. Наиболее точным является типический отбор, а наименее точным, но наименее трудоемким является серийный отбор.

Одной из наиболее важных и ответственных задач при организации и проведении выборочного наблюдения является установление необходимой численности выборки (выборочной совокупности). Расчет основывается на формулах предельной ошибки выборки.

Понятие о выборочном наблюдении, его преимущества - student2.ru Понятие о выборочном наблюдении, его преимущества - student2.ru - для повторного способа:

Понятие о выборочном наблюдении, его преимущества - student2.ru - для вариационного признака (х), аналогично

Понятие о выборочном наблюдении, его преимущества - student2.ru - для альтернативного признака (р).

Для бесповторного способа подобные преобразования дадут такие формулы:

Понятие о выборочном наблюдении, его преимущества - student2.ru - для вариационного признака (х);

Понятие о выборочном наблюдении, его преимущества - student2.ru - для альтернативного признака (р).

После отбора единиц производится проверка репрезентативности, то есть устанавливается, на какую величину значения основных признаков выборочной совокупности отклоняются от значения этих признаков в генеральной совокупности. В качестве показателя репрезентативности выборки можно определить соотношение Понятие о выборочном наблюдении, его преимущества - student2.ru для известных данных. Выборка считается репрезентативной, если указанное отношение находится в пределах от 95% до 105%. Если указанные пределы отличаются, то отбор повторяется, пока репрезентативность выборочной совокупности не станет удовлетворительной.

Контрольные вопросы к теме

1. Какое наблюдение называется выборочным?

2. В чем заключается основная задача выборочного наблюдения?

3. В чем преимущество выборочного наблюдения перед сплошным?

4. Что называется доверительным интервалом и как он рассчитывается?

5. Что такое ошибка выборки и по каким формулам она исчисляется?

6. Что такое коэффициент доверия и как он используется в выборочном наблюдении?

7. Каковы условия правильного отбора единиц совокупности при выборочном наблюдении?

8. По каким формулам определяется необходимая численность выборки, обеспечивающая с определенной вероятностью заданную точность наблюдения?

9. Охарактеризуйте собственно-случайный и типический вид отбора единиц для выборочного наблюдения.

10. В чем сущность механического и серийного отбора единиц в выборочном наблюдении?

Понятие о выборочном наблюдении, его преимущества - student2.ru

Тесты

1. По формуле Понятие о выборочном наблюдении, его преимущества - student2.ru рассчитывают:

a) Коэффициент доверия.

b) Предельную ошибку выборки.

c) Дисперсию генеральной совокупности.

d) Среднее значение признака в выборочной совокупности.

2. Выборочное наблюдение является:

a) Сплошным.

b) Несплошным.

c) Единовременным.

d) Текущим.

3. Формула Понятие о выборочном наблюдении, его преимущества - student2.ru - это:

a) предельная ошибка выборки;

b) средняя ошибка выборки;

c) доверительный интервал;

d) коэффициент доверия.

Опорный конспект

Понятие о выборочном наблюдении, его преимущества - student2.ru Выборочное наблюдение.

       
  Понятие о выборочном наблюдении, его преимущества - student2.ru
    Понятие о выборочном наблюдении, его преимущества - student2.ru
 


Показатели Обозначение показателей в
Генеральной совокупности Выборочной совокупности
Численность единиц совокупности N n
Среднее значение признака Понятие о выборочном наблюдении, его преимущества - student2.ru Понятие о выборочном наблюдении, его преимущества - student2.ru
Дисперсия Понятие о выборочном наблюдении, его преимущества - student2.ru Понятие о выборочном наблюдении, его преимущества - student2.ru
Среднее квадратическое оттклонение s S
Доля P W

             
  Понятие о выборочном наблюдении, его преимущества - student2.ru  
Понятие о выборочном наблюдении, его преимущества - student2.ru
 
 
  Понятие о выборочном наблюдении, его преимущества - student2.ru  
Понятие о выборочном наблюдении, его преимущества - student2.ru
 
   
Понятие о выборочном наблюдении, его преимущества - student2.ru
 
  Понятие о выборочном наблюдении, его преимущества - student2.ru
 
 
    Понятие о выборочном наблюдении, его преимущества - student2.ru
Понятие о выборочном наблюдении, его преимущества - student2.ru
Понятие о выборочном наблюдении, его преимущества - student2.ru

                               
    Понятие о выборочном наблюдении, его преимущества - student2.ru   Понятие о выборочном наблюдении, его преимущества - student2.ru
    Понятие о выборочном наблюдении, его преимущества - student2.ru
          Понятие о выборочном наблюдении, его преимущества - student2.ru
 
 
  Понятие о выборочном наблюдении, его преимущества - student2.ru   Понятие о выборочном наблюдении, его преимущества - student2.ru   Понятие о выборочном наблюдении, его преимущества - student2.ru
 
 
    Понятие о выборочном наблюдении, его преимущества - student2.ru

Ряды динамики и их виды

Изменение явлений во времени называется динамикой, а показатели, характеризующие это изменение называют показателями динамики. Изучение развития общественных явлений во времени - одна из основных задач статистики. Характеризуется процесс развития во времени и тенденции этого развития.

Показатели динамики образуют ряды динамики. Рядами динамики в статистике называются ряды последовательно расположенных в хронологическом порядке показателей, которые характеризуют развитие явления. Рядами динамики называются ряды количественно выраженных характеристик, отражающих изменение во времени различных общественных явлений.

В анализе рядов динамики используют следующую систему показателей:

1. Абсолютный прирост.

2. Темп роста.

3. Темп прироста.

4. Абсолютное содержание одного процента прироста.

5. Средние в рядах динамики:

6. Средний уровень ряда.

7. Средний абсолютный прирост.

8. Средний темп роста и прироста.

В зависимости от вида приводимых обобщающих показателей различают ряды динамики абсолютных, относительных и средних величин. Исходными, первоначальными являются ряды динамики абсолютных величин. Ряды динамики относительных и средних величин являются производными.

Ряды динамики абсолютных величин в свою очередь подразделяются на интервальные(характеризующие явление за определенный промежуток времени, например, объем выпущенной продукции за месяц, сумму затрат за квартал, сумма фонда заработной платы за год и т.д.) и моментные (характеризующие явление на определенный момент времени, например, остатки товарных запасов на начало года, денежные средства на расчетном счете на конец месяца, численность персонала на конец года).

Наши рекомендации