Исчисление количественных характеристик корреляционной связи.
Исследуя природу, общество, экономику, необходимо считаться со взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания так или иначе определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействия одних факторов на другие является одной из основных задач статистики.
Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи.
Важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные — множественной.
По силе различаются слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей.
В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая — регрессионный анализ.
Практически для количественной оценки тесноты связи широко используют линейный коэффициент корреляции. Иногда его называют просто коэффициентом корреляции. Если заданы значения переменныхХ и У, то он вычисляется по формуле
Можно использовать и другие формулы, но результат должен быть одинаковым для всех вариантов расчета.
Коэффициент корреляции принимает значения в интервале от - 1 до + 1, Принято считать, что если , то связь слабая;
при — средняя; при — сильная, или тесная. Когда — связь функциональная.Если же г = 0, то это дает основание говорить об отсутствии линейной связи между У и Х.
При нелинейной зависимости для характеристики влияния изменения Х на У используют так называемый коэффициент эластичности (Э), который показывает, на сколько процентов изменится У при изменении Х на один процент, т. е.
Например, для линейного уравнения коэффициент эластичности фактора Х выглядит как
Для парной степенной функции коэффициент эластичности Х равен
При оценке линейной множественной связи рассчитывают коэффициент множественной корреляции. По смыслу он отражает тесноту связи между вариацией зависимой переменной и вариациями всех включенных в анализ независимых переменных. Обычно сначала строится линейная множественная регрессия, а затем оценивается сам коэффициент.
Наиболее общие формулы для его определения имеют следующий вид:
где — общая дисперсия фактических данных результативного признака (дисперсия У);
— остаточная дисперсия, характеризующая вариацию У за счет факторов, не включенных в уравнение регрессии.
Коэффициент множественной корреляции изменяется от О до 1. Чем ближе R к 1, тем более сильная связь между У и множеством Х.
Для нелинейной множественной связи рассчитывают индекс корреляции. Форма и процедура его вычисления аналогичны указанным выше, только взаимодействие факторов аппроксимируется нелинейной функцией. Он также изменяется в пределах от 0 до 1. На практике, как правило, используется одно название — коэффициент множественной корреляции.
Квадрат R равен так называемому коэффициенту детерминации (D или ). Он показывает, какая часть вариации зависимого признака объясняется включенными в модель факторами.