Основные направления исследования эволюции систем
При исследовании эволюции системы необходима ее декомпозиция на подсистемы с целью обеспечения:
· эффективного взаимодействия с окружением;
· оптимального обмена определяющими материальными, энергетическими, информационными, организационными ресурсами с подсистемами;
· эволюции системы в условиях динамической смены и переупорядочивания целей, структурной активности и сложности системы;
· управляемости системы, идентификации управляющей подсистемы и эффективных связей с подсистемами, обратной связи.
Пусть имеется некоторая система S с N подсистемами. Для каждой i - й подсистемы определим вектор x(i) = (x1(i), x2(i),…,xni(i)) основных параметров, без которых нельзя описать и изучить функционирование подсистемы в соответствии с целями и доступными ресурсами системы. Введем в рассмотрение функцию s(i) = s(x(i)), которую назовем функцией активности или просто активностью этой подсистемы. Например, в бизнес-процессах это понятие близко к понятию деловой активности.
Для всей системы определены вектор состояния системы x и активность системы s(x), а также понятие общего потенциала системы.
Например, потенциал активности может быть определен с помощью интеграла от активности на задаваемом временном промежутке моделирования.
Эти функции отражают интенсивность процессов, как в подсистемах, так и в системе в целом.
Важными для задач моделирования являются три значения
s(i)max, s(i)min, s(i)opt
- максимальные, минимальные и оптимальные значения активности i - й подсистемы, а также аналогичные значения для всей системы (smax, smin, sopt).
Если дана открытая экономическая система (процесс), а Н0, Н1 - энтропия системы в начальном и конечном состояниях процесса, то мера информации определяется как разность вида:
ΔН = Н0 - Н1.
Уменьшение ΔН свидетельствует о приближении системы к состоянию статического равновесия (при доступных ресурсах), а увеличение - об удалении. Величина ΔН - количество информации, необходимой для перехода от одного уровня организации системы к другой (при ΔН > 0 - более высокой, при ΔН < 0 - более низкой организации).
Рассмотрим подход и с использованием меры по Н. Моисееву.
Пусть дана некоторая управляемая система, о состояниях которой известны лишь некоторые оценки - нижняя smin и верхняя smax. Известна целевая функция управления
F(s(t), u(t)),
где s(t) - состояние системы в момент времени t, а u(t) - управление из некоторого множества допустимых управлений, причем считаем, что достижимо uopt - некоторое оптимальное управление в пространстве U, t0 < t < T, smin s smax.
Мера успешности принятия решения может быть выражена математически:
H = |(Fmax - Fmin) / (Fmax + Fmin)|,
Fmax = max F(uopt, smax), Fmin = min F(uopt, smin),
t [t0;T ], s [smin; smax].
Увеличение Н свидетельствует об успешности управления системой .
Функции должны отражать эволюцию системы, в частности, удовлетворять условиям:
1. Периодичности (цикличности), например:
( 0 < T < ∞, t: (i)(s; s(i), t) = (i)(s; s(i), t + T),
(i)(s; s(i), t) = (i)(s; s(i), t + T)).
2. Затуханию при снижении активности, например:
(s(x) 0 i = 1, 2, ..., n) => ( (i) 0, (i) 0).
3. Стационарности: выбор или определение функции (i), (i) осуществляется таким образом, чтобы система имела точки равновесного состояния, а s(i)opt, sopt достигались бы в стационарных точках x(i)opt, xopt для малых промежутков времени. В больших промежутках времени система может вести себя хаотично, самопроизвольно порождая регулярные, упорядоченные, циклические взаимодействия (детерминированный хаос).
Взаимные активности (ij)(s; s(i), s(j), t) подсистем i и j не учитываются. В качестве функции (i), (i) могут быть эффективно использованы производственные функции типа Кобба - Дугласа:
В таких функциях важен параметр i, отражающий степень саморегуляции, адаптации системы. Как правило, его нужно идентифицировать.
Функционирование системы удовлетворяет на каждом временном интервале (t; t + τ) ограничениям вида
При этом отметим, что выполнение для τ > 0 одного из двух условий
приводит к разрушению (катастрофе) системы.
Обратимся к социально - экономической среде, которая может возобновлять с коэффициентом возобновления
(τ, t, x) (0 < t <T, 0 < x < 1, 0 < τ < T)
свои ресурсы. Этот коэффициент зависит, в общем случае, от мощности среды (ресурсоемкости и ресурсообеспеченности).
Рассмотрим простую гипотезу:
(τ, t, x) = 0 + 1x,
Чем больше ресурсов - тем больше темп их возобновления. Запишем непрерывную эволюционную модель, где a - коэффициент естественного прироста ресурсов, b - убыли ресурсов:
Пусть (τ) = 0(τ) + 1(τ) x(τ) > 0. Тогда
Задача всегда имеет решение при x = 0. Тогда эволюционный потенциал системы можно определить как величину:
Чем выше темп возобновления - тем выше λ, чем меньше - тем ниже λ.
Напрашивается вывод. Каким бы хорошим ни было состояние ресурсов в начальный момент, они неизменно будут истощаться, если потенциал системы меньше 1.
Отметим, что если ds/dt - общее изменение энтропии системы, ds1/dt - изменение энтропии за счет необратимых изменений структуры, потоков внутри системы, ds2/dt - изменение энтропии за счет усилий по улучшению обстановки (например, экономической, экологической, социальной), то справедливо уравнение И. Пригожина:
ds/dt = ds1/dt + ds2/dt.
При эволюционном моделировании социально - экономических систем полезно использовать и классические математические модели и неклассические, в частности, учитывающие пространственную структуру системы, структуру и иерархию подсистем (графы, структуры данных и др.), опыт и интуицию (эвристические, экспертные процедуры).
Пример. Пусть дана некоторая экологическая система Ω, в которой имеются точки загрязнения (выбросов загрязнителей) xi, i = 1, 2, …, n. Каждый загрязнитель xi загрязняет последовательно экосистему в промежутке времени [ti-1; ti]. Каждый загрязнитель может оказать воздействие на активность другого загрязнителя (например, уменьшить, нейтрализовать или усилить по известному эффекту суммирования воздействия загрязнителей). Силу (меру) такого влияния можно определить через rij,
R = {rij: i = 1, 2,…, n-1; j = 2, 3,…, n}.
Структура задаётся графом: вершины - загрязнители, ребра – меры загрязнения. Найдём подстановку, минимизирующую функционал вида:
где F - суммарное загрязнение системы с данной структурой S.
Чем быстрее будет произведен учёт загрязнения в точке xi, тем быстрее осуществимы социально - экономические мероприятия по его нейтрализации. Чем меньше будет загрязнителей до загрязнителя xi, тем меньше будет загрязнение среды.
В качестве меры rij может быть взята мера, учитывающая как время начала воздействия загрязнителей, так и число, и интенсивность этих загрязнителей:
где vij - весовой коэффициент, определяющий степень влияния загрязнителя xi на загрязнитель xj (эффект суммирования), hj - весовой коэффициент, учитывающий удельную интенсивность действия загрязнителя xj и интервал τi, в течение которого уменьшается интенсивность (концентрация) загрязнителя. Весовые коэффициенты устанавливаются экспертно или экспериментально.
Принцип эволюционного моделирования предполагает необходимость и эффективность использования методов и технологии искусственного интеллекта, в частности, экспертных систем.
Адекватным средством реализации процедур эволюционного моделирования являются генетические алгоритмы.
Генетические алгоритмы
Идея генетических алгоритмов "подсмотрена" у систем живой природы, у систем, эволюция которых развертывается в сложных системах достаточно быстро.
Генетический алгоритм -это алгоритм, основанный на имитации генетических процедур развития популяции в соответствии с принципами эволюционной динамики.
Генетические алгоритмы используются для решения задач оптимизации (многокритериальной), для задач поиска и управления.
Данные алгоритмы адаптивны, они развивают решения и развиваются сами. Особенность этих алгоритмов - их успешное использование при решении сложных проблем.
Пример. Рассмотрим задачу безусловной целочисленной оптимизации (размещения): найти максимум функции f(i), i - набор из n нулей и единиц, например, при n = 5, i = (1, 0, 0, 1, 0). Это очень сложная комбинаторная задача для обычных, "негенетических" алгоритмов. Генетический алгоритм может быть построен на основе следующей укрупненной процедуры:
1. Генерируем начальную популяцию (набор допустимых решений задачи) - I0 = (i1, i2, :, in), ij {0,1} и определяем некоторый критерий достижения "хорошего" решения, критерий остановки , процедуру СЕЛЕКЦИЯ, процедуру СКРЕЩИВАНИЕ, процедуру МУТАЦИЯ и процедуру обновления популяции ОБНОВИТЬ;
2. k = 0, f0 = max{f(i), i I0};
3. выполнять пока не( ) :
· с помощью вероятностного оператора (селекции) выбираем два допустимых решения (родителей) i1, i2 из выбранной популяции (вызов процедуры СЕЛЕКЦИЯ);
· по этим родителям строим новое решение (вызов процедуры СКРЕЩИВАНИЕ) и получаем новое решение i;
· модифицируем это решение (вызов процедуры МУТАЦИЯ);
· если f0 < f(i) то f0 = f(i);
· обновляем популяцию (вызов процедуры ОБНОВИТЬ);
· k = k + 1
Подобные процедуры определяются с использованием аналогичных процедур живой природы (на том уровне знаний о них, что мы имеем).
Процедура СЕЛЕКЦИЯ может из случайных элементов популяции выбирать элемент с наибольшим значением f(i).
Процедура СКРЕЩИВАНИЕ (кроссовер) может по векторам i1, i2 строить вектор i, присваивая с вероятностью 0.5 соответствующую координату каждого из этих векторов - родителей. Это самая простая процедура. Используют и более сложные процедуры, реализующие более полные аналоги генетических механизмов.
Процедура МУТАЦИЯ также может быть простой или сложной. Например, простая процедура с задаваемой вероятностью для каждого вектора меняет его координаты на противоположные (0 на 1, и наоборот).
Процедура ОБНОВИТЬ заключается в обновлении всех элементов популяции в соответствии с указанными процедурами.
Хотя генетические алгоритмы и могут быть использованы для решения задач, которые, нельзя решить другими методами, они не гарантируют нахождение оптимального решения, по крайней мере, за приемлемое время. Здесь более уместны критерии типа "достаточно хорошо и достаточно быстро".
Главное же преимущество заключается в том, что они позволяют решать сложные задачи, для которых не разработаны пока устойчивые и приемлемые методы, особенно на этапе формализации и структурирования системы.
Генетические алгоритмы эффективны в комбинации с другими классическими алгоритмами, эвристическими процедурами, а также в тех случаях, когда о множестве решений есть некоторая дополнительная информация, позволяющая настраивать параметры модели, корректировать критерии отбора, эволюции.