Геометрична інтерпретація задачі лінійного програмування

Загальна економіко-математична модель задачі лінійного програмування

Загальна лінійна економіко-математична модель економічних процесів та явищ – так звана загальна задача лінійного програмування подається у вигляді:

Геометрична інтерпретація задачі лінійного програмування - student2.ru (3.1)

за умов:

Геометрична інтерпретація задачі лінійного програмування - student2.ru (3.2)

Геометрична інтерпретація задачі лінійного програмування - student2.ru (3.3)

Отже, потрібно знайти значення змінних x1, x2, …, xn, які задовольняють умови (3.2) і (3.3), і цільова функція (3.1) набуває екстремального (максимального чи мінімального) значення.

Для довільної задачі математичного програмування у п.2.1 були введені поняття допустимого та оптимального планів.

Для загальної задачі лінійного програмування використовуються такі поняття.

Вектор Х = (х1, х2, …, хn), координати якого задовольняють систему обмежень (3.2) та умови невід’ємності змінних (3.3), називається допустимим розв’язком (планом) задачі лінійного програмування.

Допустимий план Х = (х1, х2, …, хn) називається опорним планом задачі лінійного програмування, якщо він задовольняє не менше, ніж m лінійно незалежних обмежень системи (3.2) у вигляді рівностей, а також обмеження (3.3) щодо невід’ємності змінних.

Опорний план Х = (х1, х2, …, хn), називається невиродженим, якщо він містить точно m додатних змінних, інакше він вироджений.

Опорний план Геометрична інтерпретація задачі лінійного програмування - student2.ru , за якого цільова функція (3.1) досягає масимального (чи мінімального) значення, називається оптимальним розв’язком (планом) задачі лінійного програмування.

Задачу (3.1)—(3.3) можна легко звести до канонічної форми, тобто до такого вигляду, коли в системі обмежень (3.2) всі bi (i = 1, 2, …, m) невід’ємні, а всі обмеження є рівностями.

Якщо якесь bi від’ємне, то, помноживши i-те обмеження на
(– 1), дістанемо у правій частині відповідної рівності додатне значення. Коли i-те обмеження має вигляд нерівності аi1х1i2х2+…+аinxn ≤ bi, то останню завжди можна звести до рівності, увівши додатковузмінну xn+1:

ai1x1+ai2x2+…+ ain xn + xn + 1 = bi.

Аналогічно обмеження виду аk1x1 + ak2x2 + … + aknxn ≥ bk зводять до рівності, віднімаючи від лівої частини додаткову змінну хn+2, тобто:

ak1x1 + ak2x2 + … + aknxn – xn + 2 = bkn+1 ≥ 0, хn+2 ≥ 0).

Форми запису задач лінійного програмування

Задачу лінійного програмування зручно записувати за допомогою знака суми «S». Справді, задачу (3.1)-(3.3) можна подати так:

Геометрична інтерпретація задачі лінійного програмування - student2.ru

за умов:

Геометрична інтерпретація задачі лінійного програмування - student2.ru (3.4)

Ще компактнішим є запис задачі лінійного програмування у векторно-матричному вигляді:

max(min) Z = CX

за умов:

АХ = А0; (3.5)

Х ≥ 0,

де

Геометрична інтерпретація задачі лінійного програмування - student2.ru

є матрицею коефіцієнтів при змінних;

Геометрична інтерпретація задачі лінійного програмування - student2.ru — вектор змінних; Геометрична інтерпретація задачі лінійного програмування - student2.ru — вектор вільних членів;

С = (с1, с2, …, сп) — вектор коефіцієнтів при змінних у цільовій функції.

Часто задачу лінійного програмування зручно записувати у векторній формі:

max(min)Z = CX

за умов:

A1x1 + A2x2 + … + Anxn = A0; (3.6)

X ≥0,

де

Геометрична інтерпретація задачі лінійного програмування - student2.ru

є векторами коефіцієнтів при змінних.

Геометрична інтерпретація задачі лінійного програмування

Розглянемо на площині х1Оx2 сумісну систему лінійних нерівностей:

Геометрична інтерпретація задачі лінійного програмування - student2.ru (3.7)

Геометрична інтерпретація задачі лінійного програмування - student2.ru

Кожна нерівність цієї системи геометрично визначає півплощину з граничною прямою ai1x1 + ai2x2 = bi (i=1,2, ..., т). Умови невід’ємності змінних визначають півплощини з граничними прямими х1 = 0 та х2 = 0. Система сумісна, тому півплощини як опуклі множини, перетинаючись, утворюють спільну частину, що є опуклою множиною і являє собою сукупність точок, координати кожної з яких є розв’язком даної системи (рис.3.1).

Геометрична інтерпретація задачі лінійного програмування - student2.ru

Рисунок 3.1

Сукупність цих точок (розв’язків) називають багатокутником розв’язків, або областю допустимих планів (розв’язків) задачі лінйного програмування. Це може бути точка (єдиний розв’язок), відрізок, промінь, багатокутник, необмежена багатокут­на область.

Якщо в системі обмежень (3.7) буде три змінних, то кожна нерівність геометрично визначатиме півпростір тривимірного простору, граничними площинами котрого будуть ai1x1 + ai2x2 + ai3x3 = bi (i = 1, 2, ..., т), а умови невід’ємності – півпростори з граничними площинами хj=0 (j = 1, 2, 3), де і – номер обмеження, а j–— номер змінної. Якщо система обмежень сумісна, то ці півпростори як опуклі множини, перетинаючись, утворять у тривимірному просторі спільну частину, що називається багатогранником розв’язків. Він може бути точкою, відрізком, променем, багатокутником, багатогранником, багатогранною необмеженою областю.

Нехай у системі обмежень (3.7) кількість змінних більша, ніж три: х1, х2,… хn; тоді кожна нерівність визначає півпростір n-вимірного простору з граничною гіперплощиною аi1x1 + ai2x2 + ai3x3 + … +ainxn = bi (i = 1, 2, ..., т). Кожному обмеженню виду (3.7) відповідають гіперплощина та напівпростір, який лежить з одного боку цієї гіперплощини, а умови невід’ємності — півпрос­тори з граничними гіперплощинами хj = 0 (j=1, 2, 3, ..., n).

Якщо система обмежень сумісна, то за аналогією з тривимірним простором вона утворює спільну частину в n-вимірному просторі — опуклий багатогранник допустимих розв’язків.

Отже, геометрично задача лінійного програмування являє собою відшукання координат такої точки багатогранника розв’яз­ків, при підстановці яких у цільову лінійну функцію остання набирає максимального (мінімального) значення, причому допустимими розв’язками є усі точки багатогранника розв’язків.

Цільову функцію

Геометрична інтерпретація задачі лінійного програмування - student2.ru

в п-вимірному просторі основних змінних можна геометрично інтерпретувати як сім’ю паралельних гіперплощин, положення кож­ної з яких визначається значенням параметра Z.

Розглянемо геометричну інтерпретацію задачі лінійного програмування на прикладі. Нехай фермер прийняв рішення вирощувати озиму пшеницю і цукрові буряки на площі 20 га, відвівши під цукрові буряки не менше як 5 га. Техніко-економічні показники вирощування цих культур маємо у табл.3.1:

Таблиця 2.3 – Показники вирощування сільськогосподарських культур

Показник (із розрахунку на 1 га) Озима пшениця Цукрові буряки Наявний ресурс
Затрати праці, людино-днів
Затрати праці механізаторів, людино-днів
Урожайність, тонн 3,5
Прибуток, тис. грн 0,7

Критерієм оптимальності є максимізація прибутку.

Запишемо економіко-математичну модель структури виробницт­ва озимої пшениці та цукрових буряків, ввівши такі позначення:

х1 — шукана площа посіву озимої пшениці, га;

х2 — шукана площа посіву цукрових буряків, га.

Задача лінійного програмування має такий вигляд:

max Z = 0,7x1 + x2 (3.8)

за умов:

x1 + x2 ≤20; (3.9)

5x1 + 25x2 ≤270; (3.10)

2x1 + 8x2 ≤80; (3.11)

x2 ≥5; (3.12)

x1 ≥0, x2 ≥0. (3.13)

Геометричну інтерпретацію задачі зображено на рис.3.2.

Геометрична інтерпретація задачі лінійного програмування - student2.ru

Рисунок 3.2 – Область допустимих розв’язків задачі

Область допустимих розв’язків цієї задачі дістаємо так. Кожне обмеження, наприклад х1 + х2 Геометрична інтерпретація задачі лінійного програмування - student2.ru 20, задає півплощину з граничною прямою х1 + х2 = 20. Будуємо її і визначаємо півплощину, яка описується нерівністю х1 + х2 Геометрична інтерпретація задачі лінійного програмування - student2.ru 20. З цією метою в нерівність х12 Геометрична інтерпретація задачі лінійного програмування - student2.ru 20 підставляємо координати характерної точки, скажімо, х1=0 і х2=0. Переконуємося, що ця точка належить півплощині х12 Геометрична інтерпретація задачі лінійного програмування - student2.ru 20. Цей факт на рис.3.2 ілюструємо відповідною напрямленою стрілкою. Аналогічно будуємо півплощини, які відповідають нерівностям (3.10)—(3.13). У результаті перетину цих півплощин утворюється область допустимих розв’язків задачі (на рис.3.2 – чотирикутник ABCD). Цільова функція Z = 0,7x1 + x2 являє собою сім’ю паралельних прямих, кожна з яких відповідає певному значенню Z. Зокрема, якщо Z=0, то маємо 0,7х1 + х2 = 0. Ця пряма проходить через початок системи координат. Коли Z=3,5, то маємо пряму 0,7х1 + х2 = 3,5.

Наши рекомендации