Оценка качества уравнения регрессии
Качество модели регрессии связывают с адекватностью модели наблюдаемым (эмпирическим) данным. Проверка адекватности (или соответствия) модели регрессии наблюдаемым данным проводится на основе анализа остатков.
После построения уравнения регрессии мы можем разбить значение Y, в каждом наблюдении на две составляющих - и .
Остаток представляет собой отклонение фактического значения зависимой переменной от значения данной переменной, полученное расчетным путем: ( ).
На практике, как правило, имеет место некоторое рассеивание точек корреляционного поля относительно теоретической линии регрессии, т. е. отклонения эмпирических данных от теоретических ( ). Величина этих отклонений и лежит в основе расчета показателей качества (адекватности) уравнения.
При анализе качества модели регрессии используется основное положение дисперсионного анализа, согласно которому общая сумма квадратов отклонений зависимой переменной от среднего значения может быть разложена на две составляющие — объясненную и необъясненную уравнением регрессии дисперсии:
(4)
где - значения y, вычисленные по модели .
Разделив правую и левую часть (4) на
,
получим
.
Коэффициент детерминации определяется следующим образом:
Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием изучаемых факторов, т. е. определяет, какая доля вариации признака Y учтена в модели и обусловлена влиянием на него факторов.
Чем ближе к 1, тем выше качество модели.
Для оценки качества регрессионных моделей целесообразно также использовать коэффициент множественной корреляции (индекс корреляции) R
Данный коэффициент является универсальным, так как он отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных.
При построении однофакторной модели он равен коэффициенту линейной корреляции .
Очевидно, что чем меньше влияние неучтенных факторов, тем лучше модель соответствует фактическим данным.
Также для оценки качества регрессионных моделей целесообразно использовать среднюю ошибку аппроксимации:
Чем меньше рассеяние эмпирических точек вокруг теоретической линии регрессии, тем меньше средняя ошибка аппроксимации. Ошибка аппроксимации меньше 7 % свидетельствует о хорошем качестве модели.
После того как уравнение регрессии построено, выполняется проверка значимости построенного уравнения в целом и отдельных параметров.
Оценить значимость уравнения регрессии – это означает установить, соответствует ли математическая модель, выражающая зависимость между Y и Х, фактическим данным и достаточно ли включенных в уравнение объясняющих переменных Х для описания зависимой переменной Y
Оценка значимости уравнения регрессии производится для того, чтобы узнать, пригодно уравнение регрессии для практического использования (например, для прогноза) или нет. При этом выдвигают основную гипотезу о незначимости уравнения в целом, которая формально сводится к гипотезе о равенстве нулю параметров регрессии, или, что то же самое, о равенстве нулю коэффициента детерминации: . Альтернативная ей гипотеза о значимости уравнения — гипотеза о неравенстве нулю параметров регрессии.
Для проверки значимости модели регрессии используется F-критерий Фишера, вычисляемый как отношение дисперсии исходного ряда и несмещенной дисперсии остаточной компоненты. Если расчетное значение с n1= k и n2 = (n - k - 1) степенями свободы, где k – количество факторов, включенных в модель, больше табличного при заданном уровне значимости, то модель считается значимой.
Для модели парной регрессии:
В качестве меры точности применяют несмещенную оценку дисперсии остаточной компоненты, которая представляет собой отношение суммы квадратов уровней остаточной компоненты к величине (n- k -1), где k – количество факторов, включенных в модель. Квадратный корень из этой величины ( ) называется стандартной ошибкой:
Для модели парной регрессии