Порядок выполнения работы и указания
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Рязанский государственный радиотехнический университет
Кафедра эконометрики и математического моделирования
МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ
К САМОСТОЯТЕЛЬНОЙ РАБОТЕ
ПО ДИСЦИПЛИНЕ “ЭКОНОМЕТРИКА”
для студентов групп П-130, П-131
Заведующий кафедрой ЭиММ РГРТУ
профессор Чураков Е.П.
Рязань 2012
ОБЩИЕ ПОЛОЖЕНИЯ
Тема самостоятельной работы: проведение корреляционного и регрессионного анализа зависимости товарооборота от торговой площади и среднего в день числа посетителей.
Цель самостоятельной работы: практическое изучение и применение основных методов корреляционного и регрессионного анализа.
Объект исследования:товарооборот 12 магазинов.
Исходные данные к работе:
Годовой товарооборот магазинов (в млн. р.)
Y=[19.7 38 40.9 41 56.2 68.5 75 89 91.1 91.2 99.8 108.5]T+z ,
где T – символ транспонирования и z- Ваш номер в списке группы;
торговая площадь (тыс.кв. м.)
X1=[0.24 0.31 0.55 0.48 0.78 0.98 0.94 1.21 1.29 1.12 1.29 1.49]T+ ;
среднее в день число посетителей (тыс.чел.)
X2=[8.2 10.2 9.3 11 8.5 7.5 12.3 10.8 9.9 13.7 12.3 13.9]T+ .
Цель исследования: выявить, аналитически описать и обосновать зависимость товарооборота магазинов от величины торговой площади и среднего числа покупателей.
Регрессионные модели, используемые в процессе выполнения работы:
Регрессионная модель | Номер в задании |
y= 0+ 1x1+ 2x2+ 3x12+e | |
y= 0+ 1x1+ 2x2+ 3x22+e | |
y= 0+ 1x1+ 2x2+ 3x1x2+e | |
y=0+1x1+2x2+3 +e | |
y= 0+ 1x1+ 2x2+ 3 +e |
В этой таблице : y –товарооборот; x1 –торговая площадь; x2 – среднее число посетителей; i, i=0, 1, 2, 3, – параметры регрессии, e – стохастическая составляющая.
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ И УКАЗАНИЯ
1. В соответствии с ниже приведенной таблицей вариантов заданий по Вашему номеру z в составе группы определите регрессионную модель, подлежащую последующему исследованию, и исходные данные Y, X1, X2 к работе.
Модель | ||||||
2. Постройте диаграммы рассеяния годового товарооборота в зависимости от торговой площади и среднего числа посетителей.
3. Проверьте наличие зависимости переменной y от аргументов x1, x2. Для упрощения анализа на начальном этапе исследования выявите наличие (или отсутствие) этой зависимости отдельно по каждой экзогенной переменной x1 и x2. Соответствующий анализ проводится по следующей схеме.
На основании экспериментальных данных находятся эмпирические (выборочные) коэффициенты парной корреляции и эндогенной переменной y с каждой из экзогенных переменных x1 и x2 :
= ,
k=1,2. (1)
С помощью вычисленных эмпирических коэффициентов корреляции находятся соответствующие значения случайной величины
gk= ~t(n-2), k=1,2, (2)
распределенной по закону Стьюдента с n-2 степенями свободы и используемой для выявления значимости каждого из парных коэффициентов корреляции. Для анализа значимости задаются доверительной вероятностью 1-a и
по таблицам [2] или с помощью Mathcad-программы находят 100a/2-процентную точку w100a/2 распределения Стьюдента с n-2 степенями свободы. Если окажется, что при определенном k gk>w100a/2, то с вероятностью a ошибиться гипотеза об отсутствии корреляционной связи величины y и соответствующей этому k экзогенной переменной отвергается как несоответствующая экспериментальным данным, а соответствующий выборочный коэффициент парной корреляции признается значимым. При противоположном неравенстве с вероятностью 1-a считается справедливой гипотеза об отсутствии корреляционной связи эндогенной переменной и k-й экзогенной переменной как не противоречащая экспериментальным данным, а соответствующий этому k выборочный коэффициент корреляции принимается незначимым. Критическую точку в Mathcad можно найти, например, с помощью функции
.
4. Постройте доверительные интервалы для истинныхкоэффициентов корреляции ryk, k=1,2, воспользовавшись следующим определением: с доверительной вероятностью 1-a выполняется
thck<ryk£thdk, k=1,2, (3)
где использованы обозначения
ck,dk=0.5ln ±ua/2 - , (4)
thb = – гиперболический тангенс,
ua/2 – a/2квантиль стандартного гауссова распределения N(0, 1), который можно найти из таблиц [2] или вычислить в Mathcad’е
.
5. Пункты 3, 4 задания выполните при условии устранения из парных выборочных коэффициентов корреляции влияния мешающего параметра, соответствующего этому коэффициенту парной корреляции. С этой целью по подобной (1) формуле следует рассчитать эмпирический коэффициент корреляции между экзогенными переменными x1 и x2. Далее с использованием выражений
, (5)
находятся очищенные от влияния мешающей экзогенной переменной частные эмпирические коэффициенты корреляции и эндогенной и экзо-
генных переменных. Проверку гипотезы H0 о некоррелированности эндогенной и экзогенных переменных (истинный коэффициент частной корреляции равняется нулю) выполните с использованием статистики (2). Доверительные интервалы для истинных коэффициентов корреляции ry1 и ry2 находятся подобным (3), (4) образом, но в выражениях (2), (4) и при вычислении критических точек объем n выборки следует заменить на n-1. Сопоставьте результаты выполнения этого пункта с предыдущими результатами и дайте объяснение возникающим различиям в случае обнаружения таковых.
В процессе выполнения работы доверительная вероятность 1-a=0.95 для всех вариантов.
6. Используя метод наименьших квадратов, найдите МНК–оценку вектора регрессионных параметров в соответствии с Вашим вариантом задания. В матрично-векторных обозначениях совокупность наблюдений эндогенной переменной задается выражением
,
а оценка находится из условия
и определяется соотношениями
=(XTX)-1XTy,
= , = , = , n=12. (6)
Функция j(x1,x2) в составе матрицы определяется последним слагаемым в выражении регрессионной модели, соответствующей Вашему варианту задания; x1i, x2i – значения экзогенных переменных.
7. Используя любой вариант выражения
= , (7)
где - i-я строка матрицы , m+1 – размерность вектора , ||c|| - норма вектора c, - i-й компонент вектора , определите величину , являющуюся мерой разброса экспериментальных данных yi относительно значений, “предсказанных” регрессионной моделью (оценка дисперсии стохастической составляющей в составе экспериментальных данных).
8. Вычислите коэффициент детерминации Kd2, соответствующий Вашим экспериментальным данным, воспользовавшись определением
Kd2= , (8)
где использованы обозначения
yi, = [1 1 ... 1]TÎRn.
Прокомментируйте содержательный смысл этого коэффициента.
9. Подтвердите более тщательным образом наличие зависимости товарооборота от величины торговой площади и числа посетителей. Для этого сформулируйте соответствующие гипотезы и вычислите величину
z = ~ F(m, n-m-1), (9)
распределенную по закону Фишера с m степенями свободы числителя и n-m-1 степенями свободы знаменателя. Пусть w100a – 100a% -я точка F-распределения с числом степеней свободы числителя m и знаменателя n-m-1, которая находится по таблицам [2] или с помощью Mathcad-программы
Тогда если окажется z< w100a, то с вероятностью 1-a принимается гипотеза об отсутствии связи между y и x1, x2 . При противоположном неравенстве с вероятностью a ошибиться эта гипотеза отвергается. В пояснительной записке дайте подробную аргументацию этого решения.
10. Воспользовавшись выражением
K = , (10)
найдите ковариационную матрицу K ошибок оценок . Объясните смысл этой матрицы.
11. Проверьте справедливость гипотезы 3=0 против альтернативы 3 0. Эту гипотезу с доверительной вероятностью 1-a следует признать, если
, (11)
где w100a/2 –100a/2-процентная точка распределения Стьюдента с n-m-1 степенями свободы, – соответствующий элемент матрицы K. При противоположном неравенстве эта гипотеза отвергается с вероятностью a ошибиться.
12. Если принята гипотеза 3=0, следует надлежащим образом откорректировать регрессионную модель и заново провести расчеты в соответствии с пп. 6 – 10.
13. Постройте (1-a)-доверительные интервалы для истиных параметров 1 и 2 в скорректированном уравнении регрессии. Соответствующие интервалы описываются выражением
i+ua/2 < i£ i-ua/2 , i=1,2, (12)
где ua/2 – a/2-квантиль распределения Стьюдента с n-m-1 степенями свободы, величина находится по матрице K. В Mathcad’е квантиль возвращается с применением функции
Объясните смысл интервала (12).
14. Используя построенную скорректированную регрессионную модель, выясните, на сколько изменится товарооборот магазина, если площадь торговых залов увеличится на 100 кв. м., а количество посетителей уменьшится на 500 человек.
15. Поступая аналогичным п.6 образом, постройте две линейные регрессионные модели, связывающие товарооборот самостоятельно с каждой экзогенной переменной (торговая площадь и число посетителей). Графически отразите полученные зависимости на диаграммах рассеяния, построенных в п.2.
Литература