Приклади типових індивідуальних навчальних завдань 11 страница
3) за допомогою табл. 11 – 12 (додаток 2.3.4) для заданого значення tк знаходять Кt та множать його на Ру1, отримуючи Рк:
Рк = Ру1. Кt.
4) визначив значення Рп та Рк, розраховується доза опромінювання без урахування захищеності рецептора (тобто дозу, яку отримав би рецептор, якщо опромінювався на відкритій місцевості) за допомогою формули:
.
5) якщо рецептор захищений від дії іонізуючого випромінювання, то здійснюється процедура корегування дози з урахуванням коефіцієнту ослаблення захисної споруди (об’єкту) − Косл, для цього:
Dкорег. = D/Косл.
Приклад прогнозування радіаційної обстановки на об’єкті.
Вихідні дані:
1. Інформація про АЕС:
тип ядерного енергетичного реактору (ЯЕР) − ВВЕР;
електрична потужність ЯЕР – W = 1 000, МВт;
кількість аварійних ЯЕР – n = 1;
координати ЯЕР – ХАЕС = 0 км, YАЕС = 0 км (початок прямокутної системи координат суміщений з центром АЕС, а вісь ОХ вибирається в напрямку вітру);
астрономічний час аварії – Тав = 12.00 год.;
частка викинутих з ЯЕР радіоактивних речовин – h = 50 %.
2. Метеорологічні умови:
швидкість вітру на висоті 10 м – u10 = 5 м/с;
напрям вітру на висоті 10 м – a10, град = 0;
стан хмарного криву небозводу – напівпохмуро, тобто 5 балів.
3. Додаткова інформація:
час, на який визначається поверхнева активність − ТЗ = 17.00 год..;
координати об‘єкту – X = 20 км, Y = 2 км;
час початку опромінювання – tпоч = 17.00 год.;
тривалість опромінювання – Tоп = 4 год.;
захищеність людей – Косл = 2.
Порядок прогнозування.
І. Визначення поверхневої активності (Аs) в заданій точці на сліді хмари, Кu/м2:
1) відповідно до погодних умов і заданому часу доби за допомогою табл. 2 (додаток 2.3.4) визначається категорія вертикальної стійкості атмосфери: категорія стійкості – D;
2) за допомогою табл. 3 (додаток 2.3.4) оцінюється середня швидкість поширення радіоактивної хмари: швидкість поширення – 5 м/с;
3) на схему (карту) місцевості спеціальною позначкою наносять АЕС з аварійним ядерним енергетичним реактором і, у відповідності з напрямом вітру, із центру АЕС чорним кольором проводять вісь сліду радіоактивної хмари;
4) на схемі (карті) вимірюють відстань (Х) вздовж вісі сліду від АЕС до заданого об‘єкту і її зміщення від осі за координатою Y : Х = 20 км; Y = 2 км;
5) у табл. 5 – 6 (додаток 2.3.4) для заданого типу ядерного енергетичного реактору, h = 10% і відстані від нього до об‘єкту (Х) знаходять потужність дози випромінювання на вісі сліду (РX.1) через 1 годину після аварії: Рх1 = 0,189, та множать її на величину − hзкор = 50/h, тобто на 5: отримуючи 0,945 рад/год.;
6) у табл. 7 – 9 (додаток 2.3.4) знаходять значення коефіцієнту (Ку), що враховує зміну потужності дози в поперечному перетині сліду (за координатою Y ): Ку = 0,09;
7) розраховують приведене значення заданого часу (час, що пройшов після аварії – tз): tз=Tз – Tав = 17,00 – 12,00 = 5 год.;
8) за допомогою табл. 10 (додаток 2.3.4) визначають час, що пройшов після аварії, початку формування сліду в районі об’єкту – tj: tj = 1,0 год.;
9) зрівнюють заданий час – tз і час початку формування сліду – tj:
10) якщо tз £ tj,, то Аs = 0;
11) якщо tз > tj, по табл. 11 – 12 (додаток 2.3.4) визначається коефіцієнт (Кt), враховуючий спад потужності дози випромінювання у часі: tз > tj = 5 год. > >1 год., тоді Кt = 0,63;
12) розраховують коефіцієнт (Кw), що враховує електричну потужність ядерного енергетичного реактору (W) і частку радіоактивних речовин, що викинуті з нього в результаті аварії (h): Kw=10 –4·n W·h = 10-4 1·1000·50 = 5;
13) у табл. 13 (додаток 2.3.4) для заданого часу tз знаходять значення коефіцієнту (Кзагр): Кзагр = 0,13;
14) визначають поверхневу активність Аs (щільність забруднення), Кu/м2:
As=Рx1 · Ky · Kt · Kw · Kзагр = 0,945·0,09·0,63·5·0,13 = 0,035 Кu\м2.
ІІ. Визначення дози опромінювання людей:
1) дозу опромінювання, що отримає населення на відкритій місцевості визначається за допомогою формули:
,
де Рк, tк та Рп, tп – потужності доз та час її виміру, що пройшов після викиду радіоактивних речовин з реактору, відповідно закінчення та початку опромінювання:
2) у табл. 11 – 12 (додаток 2.3.4) для заданого значення tп = 5 год. (17.00 – 12.00) знаходять Кt , який дорівнює 0,63 та множать його на Ру1, отримуючи Рn: Рп = 0,945·0,09·0,63 = 0,053 рад/год.;
3) у табл. 11 – 12 (додаток 2.3.4) для заданого значення tк = 9 (21.00 – 12.00) знаходять Кt, який дорівнює 0,46 та множать його на Ру1, отримуючи Рк: Рк = 0,945·0,09·0,46 = 0,039 рад/год.
4) розраховують дозу опромінювання, що отримують люди на відкритій місцевості: D = 1,7 (0,039·9 – 0,053·5) = 0,146 рад;
5) здійснюють корегування визначеної у п. 4 дози: в автомобілях люди отримають дозу опромінювання меншу у Косл разів. У нашому випадку Косл = 2. Тоді остаточна доза буде: Dавто = 0,146 / 2 = 0,073 рад.
Висновок: доза опромінювання людей становитиме 0,073 рада.
ІІІ. Оцінка радіаційної обстановки на об’єкті.
З нанесенням зон радіоактивного зараження на схему (карту) місцевості та визначення параметрів поля іонізуючого випромінювання на території об’єкту господарювання завершується процес виявлення радіаційної обстановки. В подальшому вона оцінюється шляхом рішення низки завдань, типовими з яких є такі:
1. Визначити, які наслідки перебування людей на зараженій радіоактивними речовинами території слід очікувати, якщо не здійснювати заходи радіаційного захисту?
Приклад постановки завдання.
Через 4 години після зруйнування ядерного реактору рівень радіації на території об’єкту становив 50 рад/год. Визначити величину поглиненої дози опромінювання, яку отримує рецептор (об’єкт опромінювання) у необмежений час.
Порядок проведення розрахунків.
Доза опромінення у необмежений час визначається за допомогою формули:
D¥ ≈ 5Р1;
де D¥ – доза опромінення до повного розпаду радіоактивних речовин, рад;
Р1 = Кt·Рt, рівень радіації через годину після аварії, рад/год.;
Кt – коефіцієнт, значення якого обирається у табл. 11, 12 (додаток 2.3.4) залежно від часу, що пройшов після аварії;
Рt – рівень радіації на заданий час, рад/год.
Отже, оскільки після зруйнування ядерного реактору пройде 4 години, коефіцієнт Кt = 1,43, відповідно рівень радіації Р1 становитиме 1,43·50 = 71,5 (рад/год.).
Тоді поглинена доза опромінення, яку отримає рецептор (об’єкт опромінення) до повного розпаду радіоактивних речовин, буде:
D¥ ≈ 5·71,5 = 357,5 рад.
Висновок: поглинена доза опромінення, яку отримає рецептор (об’єкт опромінення) до повного розпаду радіоактивних речовин – 357,5 рад.
2. Визначити, яку дозу опромінювання, а відповідно й ступінь ураження, отримають працівники, що діють за певних умов захищеності на зараженій радіоактивними речовинами місцевості.
Приклад постановки завдання. За умовами завдання 1 визначити поглинену дозу опромінювання, яку можуть отримати працівники об’єкту за перші 8 годин, якщо з початку зараження вони протягом 6 годин знаходилися у протирадіаційному укритті, а потім 2 години працювали на відкритій місцевості. Коефіцієнт ослаблення протирадіаційного укриття обумовлюється конструкцією його перекриття. Воно виконано з трьох шарів: шар бетону – 11,4 см; шар цегли – 8,1 см і шар ґрунту – 8,1 см.
Порядок проведення розрахунків.
Поглинена доза опромінювання яку можуть отримати робітники об’єкту розраховується за формулою:
D = DПРУ + DВМ ,
де DПРУ, DВМ – дози, які отримують люди у протирадіаційному укритті та на відкритій місцевості відповідно.
Приймають: РПРУср, РВМср – середній рівень радіації за час перебування людей в протирадіаційному укритті – tПРУ і на відкритій місцевості – tВМ; КОСЛ – коефіцієнт ослаблення іонізуючого випромінювання протирадіаційним укриттям.
Рівень радіації на відкритій місцевості через годину після аварії на АЕС становив: Р1 = 1,43·50 = 71,5 рад/год.
Визначають рівні радіації на відкритій місцевості Р4 через 4, Р10 через 10 та Р12 через 12 годин після аварії на АЕС:
Р4 = 50 рад/год – див. завдання 1.
Р10 = Р1·Кt10 = 71,5·0,52= 37,18 рад/год.
Р12 = Р1·Кt12 = 71,5·0,48= 34,32 рад/год.
Розраховують РПРУср та РВМср :
РПРУср = = (50+37,18)·0,5 = 43,59 рад/год.;
РВМср = = (37,18+34,32)·0,5 = 35,75 рад/год.
Визначають коефіцієнти ослаблення іонізуючого випромінювання перекриттям протирадіаційного укриття КОСЛпру,як найтоншого шару матеріалу, що перешкоджає поширенню гамма-квантів у бік людей:
КОСЛ пру = КОСЛ бетону · КОСЛ цегли · КОСЛ ґрунту.
КОСЛ = 2Х/h0,5, тут Х – товщина шару захисного матеріалу; h0,5 – товщина шару половинного ослаблення даним матеріалом гамма-випромінювання. Тоді, використовуючи дані табл. 14 (додаток 2.3.4), отримуємо:
КОСЛ бетону = 4; КОСЛ цегли = 2; КОСЛ ґрунту = 2; КОСЛ пру = 16; КОСЛ вм = 1.
Отримав необхідні дані, визначають поглинену дозу опромінювання працівників об’єкту:
D = DПРУ + DВМ = (РПРУср·6)/16 + (РВМср·2)/1 = 43,59·6/16 + 35,75·2/1 = 16,3 + 71,5 = 87,8 рад.
Висновок: поглинена доза опромінення, яку можуть отримати працівники об’єкту становить 87,8 рада. Втрати людей не очікується. Можливі одиничні випадки прояви симптомів первинної реакції організму на опромінювання у легкій формі.
3. Визначити тривалість робіт за певних умов захищеності, якщо відомий рівень радіації в районі об’єкту та максимальна доза, яку працівники можуть отримати за час роботи.
Приклад постановки завдання. Якої тривалості повинен бути робочий день у працівників, що виконують обов’язки за призначенням в офісі підприємства (Косл = 7) і на відкритій місцевості, якщо роботи почнуться через 4 години після зруйнування ядерного реактору, а середній рівень радіації на цей час становитиме P = 20 рад/год. Максимальна доза, яку працівники можуть отримати за час роботи у добу Dекв = 7 бер.
Порядок проведення розрахунків.
В зв’язку з тим, що опромінювання працівників класифікується як зовнішнє і здійснюється від джерел, які викинуті із зруйнованого ядерного реактору, тобто бета-частинками та гамма-квантами, то можна вважати, що одиниці виміру максимальної дози опромінювання та дози, яка визначається розрахунками, еквівалентні за номіналами (коефіцієнт якості випромінювання для бета-частинок та гамма-квантів дорівнює одиниці).
Тоді, визначають допустиму тривалість робіт на підприємстві − Тпр, за допомогою формули:
Тпр = = = 2,45 год.
Для визначення допустимої тривалості робіт на відкритій місцевості виконують такі розрахунки:
Твм = = = 0,35 год.
Висновок: допустима тривалість робіт в офісі підприємства – 2,45 год.,
на відкритій місцевості – 0,35 год.
4. Визначити, яку дозу опромінювання, а відповідно й ступінь ураження, отримають працівники, що діють за певним режимом захищеності на зараженій радіоактивними речовинами місцевості.
Приклад постановки завдання. Визначити, яку дозу, а відповідно й ступінь ураження, може отримати людина за добу, у рік, якщо потужність експозиційної дози становить 0,011 мР/год., а режим діяльності на протязі доби такий: відпочинок в домашніх умовах − 9 год., робота в приміщенні адміністративних будинків− 8 год., користування транспортними засобами: автотранспортом – 2 год., електропотягом – 1 год., прогулянка на відкритій місцевості – 4 год.
Примітка: житлові будинки – цегляні п’ятиповерхові, а потужність експозиційної дози − const.
Розв’язання завдання.
Доза, яку отримує людина у добу визначається за допомогою формули: .
Якщо припустити, що потужність дози (Р) на протязі доби залишається постійною, а людина перебуває у цей час на відкритій місцевості, в будинках, на транспорті і в інших умовах, то ступінь її захищеності можна оцінити середньодобовим коефіцієнтом захищеності Кз, який розраховується за формулою:
К3 =24/ (t + t1 / К1 + t2 /К2 + ... + tn / Кn ),
де t− час перебування людини на відкритій місцевості, год;
t1, t2, t3, ... tn – час доби, протягом якого людина опромінюється в умовах відмінних від відкритої місцевості, год.;
К1, К2, K3, ... Кn − коефіцієнти ослаблення іонізуючого випромінювання об’єктів, в яких перебуватиме людина на протязі доби (табл. 15 додаток 2.3.4).
Тоді, за умов завдання середньодобовий коефіцієнт захищеності буде:
К3 = 24 (2+8 / 6 + 11 / 27 + 2 / 2+ 1 /3) ≈ 4,73;
а отримана людиною за добу доза становитиме:
= мР.
Нескладно визначити і річну дозу опромінювання, для чого добову дозу треба помножити на число діб у року:
Dрічна=Dдоба·365=0,056·365 = 20,44 мР.
Висновок: отримана людиною за добу доза становитиме 0,056 мР;
річна доза складе 22,44 мР.
ДЕРЖАВНИЙ ВИЩИЙ НАВЧАЛЬНИЙ ЗАКЛАД
КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ ЕКОНОМІЧНИЙ УНІВЕРСИТЕТ
імені ВАДИМА ГЕТЬМАНА
Кафедра регіональної економіки
З В І Т
про виконання завдання на практичному занятті
з навчальної дисципліни: „Безпека життєдіяльності”.
Тема 3.Техногенні небезпеки та їх реалізації.
Завдання на тему:Радіоактивність та життєдіяльність людини. (Виявлення шляхом прогнозу та оцінка обстановки в осередку ураження, що виникає при зруйнуванні об’єкту, небезпечного в радіоактивному відношенн)і.
Виконав: студент факультету ____________________________
______________________________________________________
_______курсу____________________________форми навчання
______________________________________________________
(Прізвище та ініціали)
Перевірив:_________________кафедри регіональної економіки
______________________________________________________
(Прізвище та ініціали)
КНЕУ – 201__
Навчальна та виховна мета:
1. Ознайомити студентів з основами методики виявлення та оцінки обстановки на об’єкті господарювання при загрозі виникнення (виникненні) надзвичайної ситуації, джерелом якої є об’єкт, небезпечний в радіоактивному відношенні.
2. Пробудити у студентів, як у майбутніх керівників колективів працівників, почуття відповідальності за забезпечення безпеки життя та діяльності людей в умовах надзвичайної ситуації.
Навчально-матеріальне забезпечення:
Література:
1. Панкратов О.М., Ольшанська О.В., Джог П.В., Черевко Д.Р. Безпека життєдіяльності людини у надзвичайних ситуаціях. Практикум. Ч. І – К.: КНЕУ, 2010. – 179 с.
2. Шоботов В.М. Цивільна оборона: Навчальний посібник. – Київ: ”Центр навчальної літератури”, 2004. – 439 с.
3. Методичні вказівки з курсу „Цивільної оборони”. –К.: КНЕУ, 1997. –135 с.
Наочні матеріали та технічні засоби:
· схема місцевості (за вказівками викладача);
· креслярсько-графічні інструменти (кольорові олівці, лінійка, циркуль, тощо);
· калькулятор.
Варіант № _______
1. Вихідні дані:
Суб’єкт небезпеки | Об’єкт небезпеки | Характеристика об’єкту небезпеки | Значення параметру фактору ураження | Характер діяльності персоналу | Захищеність персоналу від фактору ураження | Пора року | Метеоумови | ||
Температура повітря, 0С | Швидкість вітру | Наявність опадів | |||||||
2. Результати виконання прогнозування.
_______________ відбулася аварія на ____________________________.
(Дата час) (Найменування об'єкту)
О ____________________________________________________ піддався
(Час, дата, найменування об'єкту, району)
радіоактивному зараженню із загальною кількістю населення та персоналу __________________________________________ людей (або окремо за категоріями).
За даними виявленої обстановки _________________________________
(Сховища, споруди, будівлі)
опинилися в зоні, де рівні радіації досягають ________ рад/год.; захисні споруди і пункти управління (об'єкти в районі) – в зоні ______ , де рівні радіації _________ рад/ год.
Орієнтовні втрати від радіоактивного зараження можуть становити: робітників ____________ людей;
особового складу формувань ЦЗ об’єкту _______ людей;
населення ________ людей.
Маршрути висування сил і засобів для ліквідації надзвичайної ситуації __________________________________________________________________
(Вказати які маршрути)
до осередків ураження можна використовувати: №______ негайно №.____________ через ____________ годин після аварії і т.д.
Висновки і пропозиції:
1. На території ___________________________найскладніша радіаційна
(Найменування об'єкту, району)
обстановка склалася ________________________________________________,
(Вказуються ділянки місцевості, пункти і т.д.)
де рівні радіації на __________________ коливаються від ___________ до ___
(Час, дата)
_______________ рад/ год.
Ця обстановка вимагає проведення негайно наступних заходів:
__________________________________________________________________
(Визначити заходи і час їх проведення)
____
2. Рятувальні роботи
__________________________________________________________________ (Назвати об'єкти в районі)
почати через ________ годин в ________ зміни і закінчити їх до ________годин _____________________________________________________
Для проведення робіт залучити наступні формування: ____
3. Дозу опромінювання для особового складу аварійно-рятувальних формувань при виконанні робіт встановити на першу добу ______________ рад.
4. Для введення сил і засобів аварійно-рятувальних формувань в осередок ураження використовувати маршрути: _______________________, швидкість руху формувань ____________км/ год.
5. Режим захисту встановити: для робітників ______, населення __________________________________________________________________.
6. Тривалість робочої зміни в установах _______________годин.
7. Контроль опромінювання робітників, а також особового складу аварійно-рятувальних формувань здійснювати за допомогою дозиметрів, населення – розрахунковим способом.
Результати опромінювання людей за категоріями доповідати до ______ годин по стану на _____ годину. Пост дозиметричного контролю розташувати ______________________________________________________.
(Місце розташування поста дозконтролю)
8. Санітарну обробку людей проводити: часткову – поблизу робочих місць з періодичністю ____ годин з моменту зараження, повну – на пунктах спеціальної обробки, які розгорнути в _________________________________.
(Місце, час)
за адресою: _______________________________________________________.
9. Робітників і населення, що потрапили в зони небезпечного і надзвичайно небезпечного зараження через _____________________________
(Години, діб)
евакуювати в незаражені райони ______________________________________ __________________________________________________________________
(За якими маршрутами, вказати спосіб евакуації)
або в захисні споруди _______________________________________________
(Місце знаходження захисних споруд)
10. Першу допомогу ураженим проводити на протязі усього періоду ліквідації надзвичайної ситуації у вигляді само та взаємо допомоги із застосуванням ______________________________________________ засобів.
(Вказати яких засобів)
11. __________________________________________________________
(Пропозиції на власний розсуд)
__________________________________________________________
__________________________________________________________
Студент __________курсу, ___________ навчальної групи
__________________________________________________
(Підпис, прізвище та ініціали)
Додаток 2.3.1
Додаток 2.3.2
Додаток 2.3.3
УВІДНА
про виникнення (можливість виникнення) радіоактивного зараження у регіоні, частина якого відображена на схемі (додаток 3.3.1)
В результаті землетрусу зруйновано ядерний реактор АЕС, що розташована поблизу населеного пункту АТОМГРАД.
З реактору викинуто у довкілля 30% напрацьованих радіоактивних матеріалів.
Метеорологічні умови реальні у день і часи заняття.
Виявити та оцінити радіаційну обстановку у підрозділах підприємства „Купон”, що розташовані в населених пунктах БЕЛЬЦИ, ДАЧІ і САДИ (див. схему додаток 2).
Запропонувати режими життєдіяльності населення та персоналу визначених об’єктів.
Додаток 2.3.4
Таблиця 1.
Характеристика зон радіоактивного зараження
місцевості при аваріях на АЕС
Найменування зони | Індекс зони | Доза опромінювання за 1-й рік після формування зони, рад | Потужність дози випромінення через 1 год. після аварії, рад/год | |||
на зовнішній межі | на внутрішній межі | в середині зони | на зовнішній межі | на внутрішній межі | ||
Радіаційної небезпеки | М | 0,014 | 0,140 | |||
Помірного забруднення | А | 0,140 | 1,4 | |||
Сильного забруднення | Б | 1,4 | 4,2 | |||
Небезпечного забруднення | В | 4,2 | ||||
Надзвичайно небезпечного забруднення | Г | - | - |
Таблиця 2.
Категорії стійкості атмосфери
Швидкість вітру на висоті 10м, м/с | Час доби | ||||
день | ніч | ||||
Наявність хмарності | |||||
Відсутня | Середня | Суцільна | Відсутня | Суцільна | |
V10<2 | А | А | А | А | А |
2<V10<3 | А | А | D | F | F |
3<V10<5 | D | D | D | D | F |
5<V10<6 | D | D | D | D | D |
V10>6 | D | D | D | D | D |
А—сильно нестійка (конвекція)
D –- нейтральна (ізотермія)
F— дуже стійка (інверсія)
Таблиця 3.
Середня швидкість вітру (Vср) у шарі від поверхні
землі до висоти переміщення центру радіоактивної хмари, м/с
Категорія стійкості атмосфери | Швидкість вітру на висоті 10м (V10), м/с | |||||
менше 2 | більше 6 | |||||
А | -- | -- | -- | -- | ||
D | -- | -- | ||||
F | -- | -- | -- |
Таблиця 4.
Розміри зон радіоактивного зараження місцевості
на сліді хмари при аваріях АЕС